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1 Introduction

In February of 1994, an effort from the Fluid Dynamics and Information Sciences

Divisions at NASA Ames Research Center with McDonnel Douglas Aerospace

Company and Stanford University was initiated to develop, demonstrate, vali-

date and disseminate automated software for numerical aerodynamic simulation.

The goal of the initiative was to develop a tri-discipline approach encompassing
CFD, Intelligent Systems, and Automated Flow Feature Recognition to improve

the utility of CFD in the design cycle. This approach would then be represented

through an intelligent computational system which could accept an engineer's
definition of a problem and construct an optimal and reliable CFD solution.

Stanford University's role focused on developing technologies that advance
visualization capabilities for analysis of CFD data, extract specific flow features

useful for the design process, and compare CFD data with experimental data.

During the years 1995-1997, Stanford University focused on developing tech-
niques in the area of tensor visualization and flow feature extraction. Software li-

braries were created enabling feature extraction and exploration of tensor fields.

As a proof of concept, a prototype system called the Integrated Computational

System (ICS) was developed to demonstrate CFD design cycle.

The current research effort focuses on finding a quantitative comparison of
general vector fields based on topological features. Since the method relies on

topological information, grid matching and vector alignment is not needed in
the comparison. This is often a problem with many data comparison techniques.

In addition, since only topology based information is stored and compared for

each field, there is a significant compression of information that enables large
databases to be quickly searched. This report will (1) briefly review the tech-

nologies developed during 1995-1997 (2) describe current technologies in the
area of comparison techniques, (4) describe the theory of our new method re-

searched during the grant year (5) summarize a few of the results and finally
(6) discuss work within the last 6 months that are direct extensions from the

grant.

2 Review of Previous Work (1995-1997)

This section reviews the various visualization techniques and tools developed

under the grant during the years 1995 through 1997 that aid in the analysis of
CFD data. Since this section is only a review, past papers are cited or enclosed

that elaborate on the various techniques.

The tools are general enough to be applied to any fluid data set and for the

topology tools to a broader set of scientific data; however, for the purpose of

this section one particular problem is focused upon: a hemispherical cylinder

with an incidence angle of 19 degrees, an incoming Mach number of 1.2 and a
Reynolds number of 445, 000. The extraction of shock waves and vortex features

will be reviewed along with colored textures to simulate oil flow combined with

pressure sensitive paint. In addition, a novel method for tensor visualization



usingtopological decomposition will be discussed. The section is completed

by discussing how these tools are combined into an Integrated Computational
System (ICS).

2.1 Shock Wave Extraction

A shock surface represents a sudden change of fluid properties. Typically, a

shock is witnessed when a body travels at transonic speeds. The flow adjusts to

the body by abruptly changing its direction with consequent changes in pressure,

density, and temperature. This abruptness is caused by a nonlinear response of

flow quantities such as pressure and density to the presence of a body or as a
result of initial conditions. We have devised an effective method for shock ex-

traction by applying knowledge of compressibility theory. By computing Mach

numbers from velocities that are in the direction of the pressure gradient, and
then extracting a corresponding isosurface, shock surfaces are identified. Noise

and false detected surfaces (found passing through the boundary layer) are re-

moved by enforcing the Rankine-Hugoniot relation, and by utilizing information
about the geometry. A complete description of the algorithm is included in the

supplemental entitled: Summary of Work on Shock Wave Feature Extraction

in 3-D Datasets. The feature extractor was _Titten using custom developed

libraries that were specifically designed to ease the implementation of future

extractors. This implementation reduced the solver's code size, and provided

management and visualization of the extracted feature. Figure 1 depicts the

bow shock upstream of the hemispherical cylinder's nose, along with a second

shock on the top surface induced by the expansion due to the high angle of
attack.

2.2 Oil Flow Simulation

3-D separated flows play a significant role in aerodynamics because of the close

relationship between separation and the existence of vortices, and because of

the effort placed in trying to avoid/understand them. Vortices are important

structures of the flow far from the body as they affect lift and drag. The high-

angle-of-attack flow about a hemisphere cylinder is a classical example of flows

with massive separation. The first step in visualizing 3-D separated flows con-

sists of depicting the structure of the vector field near the body, for which an
adequate description is inferred from the skin-friction field--i.e., the 2-D tan-

gential velocity field one grid plane away from the surface of the body. This
method mimics a visualization method that is commonly used by experimental-
ists, namely, the oil flow method.

A recent major improvement was made by adopting a new rendering tech-

nique, namely anisotropic textures. By generating textures, we render 2-D

streamlines directly, without the need for integrating the vector field (Refer-

ence [1]). Textures provide an adequate solution to problems of accuracy, do
not require an integration of the whole vector field, and create continuous im-

ages.
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Figure1:Shockextractionaboutahemispherecylinder.

By combiningcoloringbasedon pressure values on the body surface this

technique of oil flow simulation provides the researcher with an image that

can be analyzed using critical point theory and can be compared with images

from experiments. Figure 2 contains such a description of the flow. Prom the

image one can clearly identify the lines of separation and re-attachment along
with the critical points on them. Details of the algorithm are described in the
supplemental entitled: Flow Visualization with Textures.

2.3 Vortex Extraction

Vortex identification is an important flow feature in the design of aircrafts.

Locating vortices can aid in improving aircraft safety, and airport landing and

take-off throughput. It can also help increase turbo-machinery efficiencies and
reduce airframe vibration and audible noise.

One method for vortex detection is to use topological skeletons. Separation

lines can be located using critical point theory. These surfaces of separation and

the associated vortices are extensions in the flow of the skin-friction topology.
The surfaces of separation emanate from the body along lines of separation.

They are computed by advecting a front of streamlines initially positioned along

the lines of separation. Figure 3 shows the surfaces of separation which roll up



Figure2: Oil flowsimulationcombinedwithpressuresensitive paint

to form the vortices.

2.3.1 Vortex Core Extraction

There are several prevalent techniques for the identification of vortex cores.

Critical point theory [2], pressure/density minima and helicity are just a few

techniques used to extract vortex cores. Observations relating the medium

eigenvector of the deformation tensor to the vorticity vector [3, 4] have lead
to investigations into techniques based on the topology of tensor fields and our
idea of hyperstreamlines. Our method for vortex core extraction is based on

using the helicity density gradient [5]. This method is effective in subsonic flows

where density methods typically fail. Unlike methods that use enstrophy, the
sign is preserved hence allowing the identification of secondary vortices via the

swirl direction. This method also produces a continuous feature by integrating

along the helicity density gradient vector, unlike methods based on critical point

theory which use interpolation. Figure 4 depicts one of the four vortex cores

(in blue), and the relation to the surrounding flow via hyperstreamlines of the
reversible momentum tensor.



Figure3: Streamsurfacesdepictingseparationtopology

2.4 Tensor Visualization

Tensor data sets are at the heart of many engineering and physics disciplines,

yet few methods have been devised for understanding and visualizing such data.
In particular, second-order tensor fields are central to fluid mechanics. For

example stresses, strain rate, and Reynolds stresses are all tensor quantities.

In traditional approaches, selected data are displayed using simple local icons
depicting, for example, eigenvalues and eigenvectors at selected points. Through
this data reduction process, valuable information is lost or discarded.

Since a tensor field is a continuous field, it should be visualized as such. The

approach we have taken is to trace the trajectories of the eigenvectors of the

tensor field (referred to as hyperstreamlines [6]). Any symmetric tensor data set

can be represented locally by a set of orthogonal eigenvectors and eigenvalues

which contain all the information about the tensor data at a given point in space.

Hyperstreamlines are tangent curves to the principal eigenvectors; the principal

eigenvectors are ordered according to the magnitude of their eigenvalues. After
a particular eigenvector is chosen, integrating along the direction of the chosen

eigenvector, a tangent curve is generated along which we can display, in an
orthogonal manner, the remaining two eigenvectors. This can be done as a set

of orthogonal vectors or ellipses having principal axes in proportion to the two
eigenvalues.
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Figure4: Vortexcore(solidblue)encompassedby hyperstreamlines(major
eigenvector)of thereversiblemomentumtensor

In thismanner,adisplayis generatedthattakesadvantageof thecontinu-
ity ofthedata,andall informationin theoriginaldataareretained.Figure5
depictsthereversiblemomentumtensorin a clearandconciseform.Hotcol-
oredregionsdepictkineticenergydensity,whilethehyperstreamlinestracethe
flow'spath. Detailsof usingtensorvisualizationmethodsin theCFDprocess
arediscussedin thefollowingenclosedsupplements:The Topology of Symmet-

ric Tensor Fields [7], The Topology of Three-Dimensional Symmetric Tensor

Fields [8], The Topology of Symmetric, Second-Order 3-D Tensor Fields [9].

2.5 Integrated Computational System (ICS)

Over the past few years, the development of the techniques described above

were largely funded by NASA Ames with additional NSF funding for the work
in visualizing the topology of 3-D tensor fields. To unify the visualization effort

based on the principle "Analyze then Visualize", a framework for solving flow

features was designed recently using an object-oriented methodology. Exploiting

encapsulation, inheritance, and dynamic function binding, we have built a com-

prehensive and extendible system, known as Integrated Computational System

(ICS). The tools in ICS have been applied to solving problems in computational

fluid and solid mechanics and can be used to compare results of multiple flow

solutions. Schematically this system is shown in Figure 6.

Each feature extraction tool is a separate inherited solver. Each feature

solver inherits data and methods from a base feature solver, and are all managed

by a feature solver manager. Problems are submitted to the manager in a

generalized, typically attribute oriented way. The feature solver manager makes
the decision and returns a specific feature solver that is best suited for the



Figure 5: Rake of hyperstreamlines of the major eigenvector field of the re-
versible momentum tensor.

problem description. This returned solver being a child of a base feature solver
has a common interface. This provides a great benefit in terms of minimizing

documentation, and standardizing the interaction with other feature solvers that

will be created. This polymorphic behavior has been extended to solutions as
well. Each feature solver returns a solution which is a feature that has inherited

from a base feature class, known as a primitive. A standard interface exists for a
primitive to display itself to the screen, or in other formats such as VRML 1. The

primitive is typically small, and usually contains some compression such that
the transfer to the client's machine requires a minimal amount of bandwidth. It

is important to note that a feature solver manager provides a division between

the interface and the implementation. The manager can be running on the

same system as the client code or on another computational server in a different
connected network.

The prototype currently provides the means to conduct a simulation using a

full Navier Stokes flow solver, and allows automatic extraction of flow features

such as shocks, vortex cores, and simulated oil flow combined with pressure sen-

sitive paint. It also includes a tensor visualization module that creates tensor

quantities relevant to fluid mechanics such as the velocity gradient, deformation,

1Virtual Reality Modeling Language provides a standard for three-dimensional data to be
shared across the internet



Integrated Computational System (ICS)

3-D Navier Stokes Solver

Visualization tools
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Figure 6: Visualization tools developed by our group at Stanford University.

and viscous stress tensors. In addition, user defined tensors can be loaded and

explored within the system. All data is visualized using a custom developed

application known as FASTlook which is similar to Silicon Graphic's Open In-

ventor's iwiew. In contrast, however, FASTlook is designed for visualization of

data-rich primitives found in scientific visualization. In addition, at the request

of NASA Ames, FASTIook has been converted to a network helper application

with the intention of incorporating the software within web based applications

such as DARWIN [10].
Supplemental documentation is included that describes FASTlook entitled

PrimView: A Scientific Visualizer User's Guide v2.0 and documentation de-

scribing the use of the solution primitives entitled Prim View: A Scientific Vi-

sualizer Library Guide v2.0.

3 Comparison Techniques

There exist a variety of comparison techniques for vector fields. These tech-

niques basically fall into three general categories: Image, data, and feature

extraction based comparisons. In most of these cases, comparisons are made

visually [11]. Image based comparisons work on the computer generated image.

Often times, a numerical data set is converted into an image that simulates an

experimental visualization technique (computational flow imaging). This may

be easier than extracting a vector field from an image, such as Schlieren. How-

c_ver, visualizing a field in 3-D is quite difficult. Often times, these techniques

are limited to two dimensions. In addition to side-by-side comparison of images,

other techniques include image fusion, and Fourier analysis [12].
Data level comparison techniques operate directly on the raw data. An accu-

rate comparison requires proper grid alignment which can involve problematic

interpolation between two fields [13].

The last comparison category is the extraction of features. Typically lea-
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turesareflowspecificsuchasvortexcores,shocksurfaces,or topology.Often
timesthereisageometricrepresentationof thefeatureandpossiblyasemantic
representationofthesystemwhichcanbecomparedusingapatternrecognition
technique[14].Thismayleadto morerobustcomparisons.Paststudyin our
grouphasfocusedonthegeometricstructureofvectorfields[15].However,this
geometricstructurecanbevisuallydeceivingsincetwovectorfieldsmayhave

the same underlying topological structure but are dissimilar in appearance [16].

Therefore, a quantitative measurement for comparison of vector fields is essen-
tial.

4 Description of a Vector Field

A 2-D vector field can be described as a system of two simultaneous differential

equations having the following form:

dx
vx -- -- = F(x,y) (1)

dt

dy = G(x, y)= d-T

where F and G axe continuous and have continuous partial derivatives in some

region D.

A vector field is typically described by the number, type, and arrangement

of critical points (or equilibrium points). These points are where the system is

defined to be F(x, y) = O, G(x, y) = 0. The number and nature of critical points
will not change under continuous transformation. A critical point is said to be

isolated or simple if there is an open neighborhood around it that contains no

other critical points. For this report, we focus entirely on simple critical points.

The global topology of the vector field is defined as the critical points and the

set of their connecting streamlines. These streamlines (separatrices) divide the
field into regions that are topologically equivalent to uniform flow. Hence, only

the topology is needed to reconstruct the field and therefore is useful as a means

of differentiating vector fields.

4.1 Classification of Simple Critical Points

The behavior of the flow about a critical point can be analyzed by investigating

the streamlines in the neighborhood of the critical point. If we axe sufficiently

close to the critical point (say a distance dx,dy away) in most cases a first order

Taylor series expansion of the velocity field is sufficient:

OVXd x Ovx d
vz (dx, dy) _ Ox + _ y

v_ (dx, dy) cOvydx cOvyd
Ox +"-_" y

(2)

10



_2.ir_ incus Saddle mir_: __]gA_ S_c _ Node
G>O 0_=0 G>O G>

p<O p>O _=0 >0

_ _ocos ea_ _z_ _mae

13<o _<o _=o 13>o

Figure 7: basic patterns for simple critical points

Hence, the flow pattern is completely determined by the 2X2 Jacobian ma-

trix, Jij = _av_ (i, j = 1, 2) evaluated at the critical point location. The various

patterns formed in the phase-plane space can be seen by analyzing the eigenval-
ues of the Jacobian. The patterns are sketched in Figure 7. Notice a positive or

negative real part (denoted by c_) is indicative of repelling/attracting behavior.

And if an eigenvalue has an imaginary part (8 < 0), it indicates circulation

about the point, otherwise asymptotic behavior is exhibited.

5 Vector Field Representation

using Clifford Algebra

In [17] [18], Sheuermann et al. introduced Clifford algebra for vector field visu-

alization. Clifford algebra provides a nice way to describe the relation between
real and complex numbers in 2D space. The vector fields are defined over a

complex field in this algebra and the nonlinear vector fields are represented as

multiplications of linear fields.

For the Euclidean plane we get a 4-dimensional R-algebra G2 with the basis

1, e z, e2, i -- e ze2 as a real vector space. Multiplication is defined as associative,

bilinear and by the equations

lej = es,j=l,2 (3)

eiej -- 1,j=1,2 (4)

i=eze2 -- e2ez (5)

12 = 1,j= 1,2 (6)

ej2 = z,j=l,2 (7)

II



i 2 = -1 (8)

with

(1 O) (0-1) (0 1) ( 1 0 )1= 0 1 i= 1 0 ex = 1 0 e2= 0 -1

The usual vectors (x, y) E R 2 axe identified with

xel +ye2 C E 2 C G2 (9)

and the complex numbers a + b/E C with

al + b/E G2 (10)

5.1 Vector fields in Clifford space

A Clifford vector field is just a multivector field with values in R 2 C G2

v : R 2 --+ R 2 C G2 (11)

Let z = x + iy, 2 = x - iy be complex numbers in the Clifford algebra. This
means

1
x = _ (z + 2) (12)

1

= _/(z - _) (13)

We get

= vl(x,v)el +v2(z,y)e2

(1 1 (z-2))ex= vl (z + _), 2-7

(1 1 )-i,2 (z + 2), _/(z - _) el

= E(z,2)el

Generally, a linear vector field can easily be shown as:

(14)

_'(r) = E(z,Z)el

= (az +b2 + c)el (15)

where a, b, c C C.

Let E : C 2 --+ C be the polynomial so that _ = E(z, 2)el. Let F_ : C 2 -_

C, k = 1,..., n be the irreducible components of E, so that E(z, 2) = I]_=1 Fk,

12



Table1: Classificationof Critical Points using a _ values

a '_ Type a _ Type

=0 <0 Center -- >0 SaddleI_l>lal

> 0 < 0 Repelling Focus < 0 < 0 Attracting Focus

> 0 = 0 Repelling Star < 0 = 0 Attracting Star

>0 >0 Repelling Node 181<1al <0 >0 Attracting Node ]81<lal

then an arbitrary polynomial vector field with isolated critical points can be

expressed as:

a(r) = E(z,2)el
n

= H(akz +bk2+ck)el (16)
k=l

where zk is the unique zero of akz + bk2 + ck.

6 Space and its Use as a Metric

For a linear vector field ,7 = (az + b2 + c)el, let a = al + a2i and b = bl + b2i.

Eigenvalues of the Jacobian around its critical point zo are A1 = bl +

and A2 = bl - _/tal 2 - b2.

Let a = bl and/_ = sign(lal 2 - b22)_/lla] 2 - _1, criteria for basic patterns of

simple critical points are:
Selection of a and /_ as shown in Figure 7 and delineated below can be

mapped to ax, bl, a2, b2 to yield any desired field:
Notice our definition of saddle is more relaxed than shown in Figure 7. The

values of a and/_ determine the type of critical point but it is not sufficient to

be used as a metric to differentiate between two types of critical points. So we
introduce a new c_-/3 space where the 8 simple critical points are mapped onto

the a,/_ axes at their respective (a, fl) points. Vectors in this space obey all

the rules defined for a regular 2-D Euclidean space. All points in this space are
normalized as follows:

at = a /y = (17)

It isshown in [19]that the actual values of a and _ do not determine

the portraitof the criticalpoint only the ratiobetween them. Hence, this

normalization maps allpointsonto a unitcircle(Figure8)and therebyprovides

a means of relativelyquantifyingthe differencebetween variouspoints. Also

note that a regularvectorfieldwith no criticalpoints,V = const •el has a = 0

and/3 = 0 and sitsat the originof the unit circle.For the rema_der ofthe

report,a and _ valueswillbe assumed normalized.

A multiple point with a setof c_'sand _'s correspondsto a setof pointsin

the a - _ space. For example, ,7= 22ei isa dipolewhich has two (1,0) point

13



A

Figure 8: Basic patterns for critical points in _-_ space;C for center, RN for
node, AN for attracting node, RF for repelling focus, AF for attracting focus,

St for star, Sa for Saddle and R for regular point

in a - _ space; and ff = (z - (2 + 2i)5 + cl )(z + (2 + 2i)5 + c2)ei has one point

at (-_7'- 3) and another point at (77' 3 in Z space.

7 Earth Mover's Distance

7.1 EMD analysis

The Earth Mover's Distance is first introduced in [20] [21] for content-based

image retrieval in a large data base. It is used to compute the minimal amount

of work that must be performed to transform one feature distribution into the

other. Feature distribution in [20] [21] are the color and texture signatures of

an image.
After careful study, we found that the EMD concept can be used to compute

the differences between vector fields. Here, the feature distribution is redefined
as the characteristics of a vector field.

Definition 1 (feature distribution) A feature distribution for a vector field

is the set o] a and f3 values associated with the vector field's critical points:

{(al, ;_1),(_2, _2),..., (_., _.)}-

Definition 2 (Energy) The energy for a vector field is:

Energy-- Z(a_ + _2),
i=1
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where n is the total number of critical points in this field.

This energy here is a quantity that characterizes the critical points of a vector

field. It is different from the physical energy. The concept "work" is used to

measure the energy differences between two vector fields or the amount of energy
used to transform one vector field into the other.

Definition 3 (Work) For two vector fields with feature distributions

{(al, _1), (as, Z2),•• •, (a,, Z,)}

and

{(_ _),(_,_), . , ,, .. ,(a,,_D}.

The amount of work necessary for transformin_ one vector field into the other
defined as: Work=_/Y_=l((ai - a_)2+(_i _fl_)2).

Intuitively, given two feature distributions, one distribution can be seen as a
set of discrete point-objects with a certain amount of mass of earth spread in

space, the other as a collection of holes in the same space. The work measures

the least amount of energy needed to fill the holes with earth and is called the

Earth Mover's Distance (EMD). Computing the EMD is based on a solution to

the old transportation problem from linear optimization [22]. This is a bipartite

network flow problem which can be formalized as the following linear program-
ming problem: Let I be a set of suppliers, J a set of consumers, c/j the cost to

ship a unit of supply from i • I to j • J

cv = _/(_i - _t) 2 + (_ - Z_)_

and it is the same as the Euclidean distance dit = 11_7i- _TjI1 in a-_3 space. A
critical point either exists as a whole or does not exist, it can not be split. In

this case, the transportation problem has the property that the optimal flow fO

can only be 0 or 1 [23]. We want to seek a set of fit that minimizes the overall
cost:

EMD(x, y) = rain Z Z citfij (18)

_el jEJ

subject to the following constraints:

fit > 0 i•1, j•J (19)

/,t = y,, j•j (20)
ieI

Zf, t = z,, ieI (21)

jEJ

= Z (22)
jEJ iEI
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Wherexi is the total supply of supplier i and yj is the total capacity of consumer
j. Constraint (19) allows shipping of supplies from a supplier to a consumer

and not vice versa. Constraint (20) forces the consumers to fill up all of their

capacities and constraint (21) limits the supply that a supplier can send as a

total amount. Constraint (22) is a feasibility condition that ensures that the

total demand equals the total supply, in other words, the distributions have the

same overall mass and the EMD is a true metric [20].
It is likely that a set of vector fields will not have the same number of

distributions. In order to satisfy constraint (22), we can create regular points

to make the supply equal the demand without changing the vector fields. For
example, if the supplier field contains 3 critical points

3

ff = H(aiz + bi2 + ci)el (23)
i=l

and the consumer field contains 5 critical points

5

= l-I (a z + + cl)el
j=l

(24)

The supplier side has two fewer points in the a - B space. Now let

3

if= H(aiz + bi2 + c/). 1. lel (25)
i=1

and the vector field remains unchanged. However, now we have two more regular

points corresponding to 1 with a -- 0 and fi_ -- 0, and both the supplier and
the consumer have 5 points in their feature distributions. All the conditions are

satisfied, and we are ready to compute the EMD for these two fields and find

out the dissimilarity between them.

In order to evaluate the meaningfulness of our new metric, we use Multidi-

mensional Scaling(MDS) [24] [25] to embed the vector fields in a two-dimensional

Euclidean space so that distances in the embedding are as close as possible to the
true EMDs between vector fields. The MDS is introduced in the next section.

8 Display of EMDs for a Large Set of

Vector Fields

The above discussions are for comparison of a pair of vector fields. If there

exist a large set of vector fields and we want to compare their topologies, it is

necessary to display them in a more meaningful way than a 1D list sorted by

their EMDs. Yossi Rubner et al. have used Multidimensional Scaling Method
(MDS) [20, 21] to display a set of images on a 2D map. Given n objects in a

high dimension, the MDS method computes a configuration in a lower dimension

space such that the distance between every pair of objects in this low dimension

16
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Figure 9: EMD of the flow over an a) airfoil b)circular cylinder.

space best matches the real distance in the high dimension. Inspired by their

work, we compute the EMDs between every pair of vector fields and position

the vector fields on a 2D map such that the distances between the vector fields

match their EMD values as close as possible.

9 Application: Flow over an Airfoil and Cylin-

der

Rogers and Kwak computed the flow past a 2-D airfoil at -90 ° angle of at-

tack [26]. The model was of interest since the flow of the wake of an XV-15 Tilt
Rotor aircraft degraded the lifting capability during hover. An incompressible,

time accurate, Navier-Stokes code with artificial compressibility at a Reynolds

number of 200 was used to compute the flow over a NACA 64A223M airfoil.

Fifty frames were computed. During this time the flow entered into a peri-

odic vortex shedding cycle. Earth mover's distance was computed over the 50
frames. The plot in Figure 9a depicts the EMD comparison of frame 1 with

the remaining 49 frames. At frame 1, the EMD is zero, which is expected since

the work required to convert a frame into itself is zero. The periodic nature

is apparent. We see a repetition approximately every 17 frames. Also we see

a sudden EMD rise when comparing frame 1 with frame 8 indicating a signif-

icant topological feature difference. Frame 1 contains three critical points: an

attracting/repelling focus and a saddle. Frame 8 contains 5 critical points: two

saddles, an attracting/repelling focus pair and a node. Since the flow is incom-

pressible, the velocity divergence, x7 • _7, is expected to be zero everywhere in

the flow. Hence only saddles and centers are to be extracted. However, it is
common due to numerical computation for a to not exactly be zero, however,

we should not expect to find a node. Upon closer examination of the data, the

velocity divergence for certain frames is not zero near the tips of the foil where

nodes are being extracted. We believe that the flow solver may not have fully
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1 34

5O 8

Figure 10: Topologically similar frames 1, 34 and 50 of flow about an airfoil.

Frame 8 is topologically dissimilar.

converged and therefore we see this sudden jump of discontinuity in the field.

The LIC images of frames 1, 34, and 50 are depicted in Figure 10 have very

similar earth mover's distance and as can be seen look nearly identical. Frame

8 differs from the others due to its variation in topology (formation of nodes)

and is apparent in the figure.
We contrast the flow over an airfoil with the flow over a circular cylinder

simulated by Rogers and Kwak under the same flow conditions [26]. In this case,
the flow is divergence free and the EMD values are quite similar. Thirty frames

were computed capturing a complete cycle of vortex shedding. As can be seen

from the plot in figure 9b, Frames 1 and 16 have nearly identical EMD values

leading one to believe the period to be every 15 frames. Due to the symmetry of

the flow, this is not far from the truth. In fact the flow produces a mirror image

of itself every 15 frames as it sheds the alternate vortex and hence leads to the

same topology. Figure 1 lb depicts the alternate vortex being shed to the image
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Frame 1 (a) Frame 16 (b)

Frame 4 (c) Frame 6 (d)

Figure 11: Topologically similar frames 1 and 16. Frame 4 depicts the down

stream dissipation of saddle-center pair producing a larger EMD. Frame 6 de-

picts formation of new saddle-center pair at the bottom of the cylinder.

found in figure lla. Furthermore, we see from figure 9b an increase in EMD
value for frame 3. This increase is due to the dissipation of the saddle-center

pair as it moves down stream (figure llc). The EMD drops by frame 6 as the
next saddle-center pair is shed (figure lld). By frame 16, the saddle-center has

moved down stream such that the a, f_ values are nearly identical to frame 1.

Two frames later the saddle-center dissipate and the cycle repeats.

10 Discussion

We have demonstrated the effectiveness of topology based feature comparisons

for vector fields. The use of a quantitative measure between fields provides the
means for fast automated comparisons as well as an indepth study of flow fields
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asdemonstratedwiththetimehistorydata.Fortheairfoildata,wehaveshown
theeffectivenessof themethodasadiagnostictool.TheclearEMDdifference
providesanimmediatealertintocalculationproblemsforparticularframes.For
the cylindricaldata,theperiodicnatureof theflowwasrevealed.TheEMD
differencealso provides insight into the evolution of the flow field.

11 Direct Extensions from the Grant Research

The work conducted under the grant introduced a quantitative method for com-

paring 2-D vector fields based on the number and type of critical points that

comprised the field. However, the arrangement of the critical points was not

considered, potentially causing two very different fields with the same type of
critical points but different streamline connections to be detected as similar

fields. The work has been extended by considering the connections between

critical points, thereby improving the representation of the vector field. The

vector field's topology is represented using an attributed relational graph, and

with the use of conventional graph matching algorithms a comparison of the

fields can be made. The supplemental paper entitled Topology Based Vector

Field Comparisons Using Graph Methods [27] discusses these graph methods.

Furthermore, the work under the grant focused on 2-D simple critical points.

Many problems occur in three dimensions, and therefore a technique for 3-D
comparisons has been recently developed. The extension to three-dimensions

follows the path of our previous work, rethinking the representation of a critical

point signature and the distance measure between the points. The discussion

of this technique is included in the supplemental entitled Feature Comparisons

Of 3-D Vector Fields Using Earth Mover's Distance [28].
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Abstract

Scientific visualization transforms complex data obtained from experiments, obser-

vations and numerical simulations into an image amenable to understanding by the

human visual system while maintaining the integrity of the information. It is a means

to communicate between human perception and abstract physical world.

Vector (first-order tensor) and second-order tensor fields are multivariate, mul-

tidimensional data sets that are typically very di_cult to comprehend. Visualizing

such complex data is a very important subfield in scientific visualization.

Much research has been accomplished on vector field visualization. However,

virtually no work has been carried out on quantitative comparisons of similarities

and differences between vector fields. This dissertation introduces a novel approach

to define a topology based measurement for such a purpose. The usefulness of this

measurement can be seen when comparing computational and experimental flow fields

under the same conditions. Furthermore, its applicability can be extended to such

cumbersome tasks as navigating through a large data base by searching for a similar

topology.

This new_ measure relies on.the-.use of. critical.points, which.are akey feature of

vector field topology. In order to characterize critical points, _ and/_ parameters are

introduced. They are used to form a closed set of eight unique patterns for simple

critical points. These patterns are also basic building blocks for higher order nonlinear

vector fields. In order to study and compare a given set of vector fields, a measure of

iv



distance between different patterns of critical points is introduced. The basic patterns

of critical points are mapped onto a unit circle in _ - _ space. The concept of Earth

Mover's Distance is used to compute the closeness between various pairs of vector

fields, and a nearest-neighbor query is thus produced to illustrate the relationship

between the given set of vector fields.

Very few methods have been developed to understand and visualize second-order

tensor fields due to their complex nature and large data sizes. Topology based study

has been done in two-dimensional space. This dissertation extends the research into

three dimensions, an area that hasn't been studied before to the best of our knowledge.

The basic constituents of second-order tensor fields are degenerate points. They

play a role similar to critical points in vector topology. In this dissertation, we address

the conditions for the existence of degenerate points and based on these conditions

we predict the distribution of degenerate points inside the field. Every tensor can

be decomposed into a deviator and an isotropic tensor. A deviator determines the

properties of a tensor field, while the isotropic part provides a uniform bias. De-

viators can be three-dimensional or locally two-dimensional. The triple degenerate

points of a tensor field are associated with the singular points of its deviator and the

double degenerate points of a tensor field have singular local 2-D deviators. Con-

trol functions are in charge of the occurrences of a singularity of a deviator. These

singularities can further be linked to important physical properties of the underlying

physical phenomena. For example, for a deformation tensor in a stationary flow, the

singularities of its deviator actually represent the area of the vortex core in the field;

for a stress tensor, the singularities represent the area with no stress; for a viscous

flow, removing the large, isotropic pressure contribution enhances dramatically the

anisotropy due to viscosity.
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Chapter 1

Introduction

1.1 Scientific Visualization

"The purpose of computing is insight, not numbers"

[Richard Hamming, 1962]

[1]

Scientific visualization transforms complex data obtained from numerical simula-

tions, observations and experiments into a graphical abstraction and renders it into

an image amenable to understanding by the human visual system while maintaining

the integrity of the information.

The concept of visualizing numerical data did not appear recently. From the

middle of 17th century to the beginning of 20th century, there have been techniques

developed by some of the greatest scientists including Halley, Watt, Descartes, Lam-

bert,. P.layfairo.and_ yon. Humboldt. -However,. it-.was- not. until the introduction of

computer graphics in the 1960s, when data visualization was brought into the fore-

front of science and engineering. In particular, McCormick's report on Visualization

in Scientific Computing [2] in 1987 stimulated an explosion of research in this "new"

field. Today, computer generated images have become a standard for communication
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involving human perception and abstract representationof the physicalworld.

Multidimensional Multivariate Visualization

Multidimensional multivariate (mdmv) visualization is an important subfield of sci-

entific visualization. It was studied separately by statisticians and psychologists long

before computer science was deemed a discipline [3]. This subfield studies multi-

ple parameters and the key relationship between them. Multidimensional refers to

the dimensionality of the independent variables, and multivariate refers to the di-

mensionality of the dependent variables [4]. For example, a deformation tensor field

(symmetric tensor) observed and recorded in a three-dimensional space at various

locations produces 3d6v data.

Scientists have studied multivariate visualization since 1782 when Crome used

point symbols to show the geographical distribution in Europe of 56 commodities [5].

However, before Tukey's exploratory data analysis, tools for multivariate visualization

usually consisted of colored pencils and graph paper, and mainly dealt with small-

sized one or two variate data. The appearance of low-priced personal computers and

workstations during the 1980s breathed new life into graphical analysis of mdmv data.

During the last decade, hundreds of new mdmv visualization techniques have been

invented [6]. Among them, a large number have been devoted to vector and tensor

field visualization such as described in [7, 8, 9, 10, 11, 12, 13, 14, 15].

1.2 Vector and Second-order Tensor Fields

Vectors and second-order tensors are both multidimensional, multivariate quantities.

A vector field in a three-dimensional space has three components at each location

in the field, therefore generates 3d3v data; whereas a general tensor field in a three-

dimensional space has nine components and generates 3d9v data. In some special
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cases, the number of independent components of a tensor is reduced. For example, a

symmetric tensor has only six independent components and an anti-symmetric tensor

has only three, therefore produce 3d6v and 3d3v data, respectively.

1.2.1 Vectors, Second-order Tensors and the Field Concept

A tensor is a quantity whose key property is the transformation law of its components,

i.e, the way its components in one coordinate system are related to its components in

another. The order of a tensor describes its complexity [16]. The simplest tensors are

a scalar and a vector which are a zeroth-order and a first-order tensor, respectively.

A second-order tensor is next in order of complexity in the tensor family. The focus

of this dissertation will be on vectors and second-order tensors. 1

Vector

A vector is a quantity uniquely specified in any coordinate system by three real

numbers (or three components). The components of a vector transform under changes

of the coordinate system according to the law (Einstein summation rule is used here):

Vi I _._ O_ik V k

where V/, Vk are the components of the vector in the old and new coordinate systems

K and K', respectively, and a_k is the cosine.oLthe.angle.between the ith axis of K'

and the kth axis of K. Generally, if a vector vanishes in one coordinate system it

vanishes in other coordinate systems as well [16].

1in this dissertation, "second-order tensor" will be very often referred as just "tensor" for
convenience.
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Second-order Tensor

A second-order tensor is a quantity uniquely specified by nine real numbers (the

components of the tensor) which transform under changes of the coordinate system

according to the law:

Tilk = aaakmTl,n (1.1)

where Ttm and T[k are the components of the tensor in the old and new coordinate

systems K and K', respectively, and aa is the cosine of the angle between the ith axis

of K' and lth axis of K (similarly for akin) [16]. Generally, if all the components of a

tensor vanish in one coordinate, they also vanish in any other coordinate systems.

A second-order tensor is often expressed as a matrix:

Tll Ti2 Tla ]
T22 T2a

Tal Ta2

(1.2)

Tensor Field Concept

A tensor field is a rule assigning a unique value of a tensor to each point of a certain

volume V in space. Let r be the position vector of a variable point of V with respect

to the origin of some coordinate system. Then a tensor field of order n is indicated

by

Tili:...i_ = Ti,i2...i. (r) (1.3)

Thus, a vector field is defined as:

Til -- Vi, (r) (1.4)
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And a second-order tensor field is defined as:

Tll(x,y,z) T12(x,y,z) T13(x, ,z))
Ti,i2 = Tm(x,y,z) T22(x,y,z) T23(x,y,z) (1.5)

Ta (x,y,z) Ta2(x,y,z) Tz3(x,y,z)

Definition 1 (Critical Points) A critical point is a point in a vector field where

all three vector components are zero and the streamline slope is indeterminate.

Critical points are the only points in a vector field where tangent curves may

cross each other. In the case of a steady state velocity field, tangent curves represent

streamlines. Critical points are characterized according to the behavior of nearby

tangent curves. There are eight basic patterns for simple (first order) critical points 1,

namely, an attracting/repelling star, an attracting/repelling node, a saddle, an at-

tracting/repelling focus and a center. A particular set of tangent curves-separatrices 1,

which end on critical points, are of special interest because they define the skeleton

which characterizes the global behavior of all other tangent curves in the vector field.

The number and nature of critical points in a vector field remain unchanged under a

continuous transformation.

Definition 2 (Degenerate Points) A degenerate point of a tensor field T : E --+

17.(R m, Rr"), where E is an open subset of R m, is a point Xo 6 E where at least two

of the m eigenvalues of T are equal to each other [38].

In the case of two-dimensional tensor fields., there are only two eigenvalues A_

and A2, and x0 is a degenerate point iff A1 (x0) = A2 (/%). For three-dimensional

tensor fields, various types of degenerate points exist, corresponding to the conditions

A_ (_0) = A2 (_0), A2 (_0) = A3 (_0), or A_ (_0) = A2 (x0) = A3 (x0)-

1will be explained in Chapter 2
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1.2.2 Combinatorial Topology of Vector and Tensor Fields

Combinatorial topology, also known as "rubber sheet geometry", is a branch of ge-

ometry. It studies the properties of figures that endure when the figures are subjected

to continuous transformations. A topological property of a figure is a property pos-

sessed alike by the figure and all its topological equivalents. In combinatorial topology,

complicated figures are constructed from simple ones and their properties are deduced

from the simple figures [17].

Combinatorial topology has extensive applications in geometry and analysis, many

of which result from connections with the theory of differential equations. It may

seem surprising that such superficially different subjects as topology and differential

equations could be related, but research has shown that a link between these two

subjects is the concept of a vector field [17]. Recent developments in scientific visual-

ization have shown that vector fields and their topological structures also play a very

important role in analyzing second-order tensor fields.

Second-order tensors are fully represented by their eigenvectors and associated

eigenvalues.

Te_ = Ai_ (1.6)

where )_, and _ (i -- 1, 2, 3) are eigenvalues and eigenvectors of the tensor T, respec-

tively. The Ai's represent all the amplitude information while the _'s represent all

the directional information of T. Visualizing a tensor field is equivalent to visualizing

its eigenvector fields. However, unlike a vector field, eigenvectors are vectors with

sign indeterminacy._This.remarkable..feature.distinguisheseigenvector fields from or-

dinary vector fields and makes their topological features even simpler. The basic

constituents of tensor topology are degenerate points where at least two of the eigen-

values are equal to each other. They play a role similar to critical points in vector

fields.
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1.3 Motivations and Objectives

1.3.1 Overview of vector field visualization

Vector fields have vast applications in physical sciences. The force fields arising from

gravitation and electromagnetism; the velocity vectors of a fluid motion, found for

example over an airfoil; and gradients, such as the pressure gradient appearing on a

weather map are all elements of vector fields.

Vector field visualization has received an enormous amount of attention. Tra-

ditionally, visualization has been part of measurements in complex physical experi-

ments. Experimental fluid mechanics relies heavily on physical visualization for flow

measurements and analysis. Many techniques have been developed in the past: seed-

ing a flow with smoke or dye dates back decades [18]; using hundreds of tiny tufts

attached to screens for visualization of two-dimensional cross sections of flows [19];

and photographs of oil streak patterns on body surfaces. These techniques provide

a wealth of information for both local and global flow structures and have had a

profound influence on flow modeling studies. However, direct results from experi-

mental visualization usually give us only a qualitative measure and the derivation of

quantitative information is accomplished by image processing and analysis. And more

recently, with the fast development of computer graphics, data visualization and anal-

ysis have provided both qualitative and quantitative insight about fluid flows [20, 21].

Many effective ways of conveying large vector field data into geometric objects, such

as arrows, glyphs, hedgehogs, streamlines, streamsurfaces and texture mapping, have

been developed over..the past two.decades...In recent.years, criticalpoint theory based

topological methods have been introduced into vector field visualization for better

understanding of the local and global structures of vector fields. Flow visualization

also serves as the basis for classification of fluid flows [22, 8, 9, 23, 10, 24, 25].

Despite all the great developments in vector field visualization, to our knowledge,
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there hasn't beenany researchon quantitative measureof closenessbetweenvector

fields. The usefulnessof this measurementcanbe seenwhencomparingcomputational

and experimental flow fields under the sameconditions for designpurposesor for

the verification of theories. Furthermore, its applicability can be extended to more

cumbersometasks such as navigating through a large databasewhile searchingfor

similar topology. It might also beusedto better quantify the changesin time varying

data sets.

1.3.2 Overview of tensor field visualization

As with vector fields, there are numerous second-order tensor quantities that are of

interest for analysis and visualization. In fluid mechanics, the Reynolds stress and

the strain-rate (deformation) tensors are tensors of considerable interest in turbulence

studies. The alignment of an medium eigenvector 2 of a deformation tensor with the

vorticity vector and scalar gradients [26] [27] provides a way of vortex detection. In

solid mechanics, the study of the Boussinesq tensor tells us the force distribution

inside a solid body. And in general relativity, the basic field equations are described

by the Einstein tensor and energy-momentum tensor.

Second-order tensor data sets are at the heart of many engineering and physical

disciplines. Yet very few methods have been developed to understand and visual-

ize such data sets due to their complex nature and their large size. In traditional

approaches, data are displayed using simple local icons depicting, for example, eigen-

vectors and eigenvalues at discrete locations. Alternatively, scalar components are

analyzed and_displayed in .two-_ or.thre_dimensional-form as an.aid-to understanding

these data. These classical methods are far from effective, but are almost universally

used to try to extract important information about underlying physical processes and

engineering principles. More significantly, through this data presentation process,

2see sec:hyper
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valuable information such as continuity of the data and global structure is discarded.

These difficulties provided us with a substantial motivation to find efficient meth-

ods for analyzing and displaying them. Thierry Dermarcelle introduced topological

methods for analyzing and visualizing second-order tensor data [11]. This approach

preserves the continuity of the tensor field and reveals the key properties of the field

without any information loss. A new visual representation-hyperstreamline [12] has

also been designed in order to visualize the topological skeletons of the tensor field.

However, his topological study is mainly applicable to two-dimensional space and

concentrates only on simple, isolated degenerate point theory in the field. We live in

a three-dimensional world and there are also a lot of cases where degenerate points

are continuous. Therefore, it is important for us to understand the underlying physics

of this world.

1.3.3 Objectives

Our main objectives in this research are as follows:

• Develop a quantitative measure for feature comparisons of vector fields,

• Design a good preprocess procedure to simplify the tensor analysis,

• Study the topological structure of three-dimensional tensor fields, and

• Find the representations of continuous degenerate points.

Vector Field Comparisons

The concept of critical points in vector fields has been well studied and has proven

to play a key role in vector field topology. However, there hasn't been any study on

quantitative measurement of similarities and differences between vector fields using

topology. In fluid dynamics, simplifications are necessary in the numerical simulation
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process in order to compute analytical solutions of flows over complex bodies in a

reasonable amount of time. Researchers formulate various models with the hope

of capturing the essential features of real flows. For example, Reynolds stress and

velocity fields in turbulent flows are almost impossible to solve analytically. Many

turbulence models, both linear and nonlinear, have been suggested to better capture

real flows.

For example, in eddy-viscosity models, the average velocity gradient is related to

velocity

-u(uj -- ut(_-_x _ + -_x ) - -_kSij, i,j = 1,2,3 (1.7)

where vt--(turbulent velocity scale) x (turbulent length scale) and k is the eddy-

viscosity. This approach to turbulence closure is extremely attractive from a compu-

tational point of view, especially in terms of numerical robustness. Second-moment

closure models (originated by Pope [28]) have been pursued extensively over the past

decade, with recent efforts being exemplified by the models of Speziale et al" [29], Fu

et al" [30], Launder and Tselepidakis [31], Craft and Launder [32] and Hanjalic and

Jakirlic [33]. All these models are derived from the exact Reynolds-stress-transport

equation and are mathematically elaborate but computationally expensive. Recent

developments in the construction of nonlinear eddy-viscosity formulation, such as

The iien-Leschziner Model [34], The Craft-Suga-Launder Models [35, 36] and The

Apsley-Leschziner Model [37], have been made in order to combine the simplicity of

the eddy-viscosity formulation with the superior fundamental strength and predictive

properties of second-moment closure.

However, all these models for a large part have been quite arbitrary. In order to

test the validity of a certain model, a comparison between the computational and

experimental results is necessary. However, a metric for the closeness between the

computational and experimental results remains unsolved. Traditionally, a series of
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charts for each component of Reynolds stress and the velocity vector have been drawn.

It is perceptually nonintuitive, as well as difficult to show the intrinsic structural

differences between the two fields. This dissertation fills the void of not having a

measurement for feature comparison between vector fields and for second-order tensor

fields.

Decomposition of Tensor Fields As a Preprocessor

Tensor analysis is a very important yet underdeveloped area in visualization. The

sheer enormous volume of information and the multivariate nature have been the

major hindrances. How to simplify the analysis and extract a small fraction of the

data sets without loss of information becomes the key issue. Every tensor field can

be decomposed into a deviator and a spherical part (definitions to follow). The

spherical part is an isotropic tensor and therefore remains invariant to a coordinate

system transformation. As a result, there is no particular need to study this part

of the tensor (here we refer to it as '%he isotropic tensor"), it serves as a uniform

bias. It will be shown that the deviator of a tensor is parallel to the tensor itself.

Therefore, their respective eigenvector fields are identical. Furthermore, the locations

of the respective degenerate points are also identical. This, in turn, means that the

topology of a tensor field is identical to the topology of its deviator. A deviator

determines the properties of a tensor field.

In this dissertation, extraction of a deviator from a tensor field is described as a

preprocessor for tensor analysis.

Topology of Three-Dimensional Tensor Fields

The difficulty with representing tensor data arises from their complexity. At a point in

space one frequently has to deal with nine or more components of a physical variable

or a derived quantity such as vorticity, or stress; and there are usually millions of
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data points available from computation or experiment. In the past, therefore, with

few techniquesaVailablefor tensor data analysisand display (often only on a local

basis),very little information wasobtainedfrom complexcalculationsconcerningfluid

flows,electromagneticradiation, or field quantities in general relativity. Much more

effort is usually expandedon the generationof data than on the understandingthat

can be attained from them. In certain fields of physics, this problem is particularly

acute. For example, in non-Newtonianfluid mechanics(suchas the flow of plastics)

the constituent equationsare often not known, and the tensordata describingstress

and strain are dependenton the model used for these equations. It would be very

significant to have methods that can analyze the results of thesecalculations while

facilitating insight into the underlyingphysical phenomena;for example,by efficiently

analyzingand displaying tensordata setsit may be possibleto investigate the effect

of variousforms of the constituent equationson the resulting stressand strain tensors

in non-Newtonianflows.

Topological representationshaveproven to be very useful in fluid mechanicsas

well as in engineering, physics and mathematics. The usefulnessis derived from

the simplicity of the representation,while preserving the richnessof the data. A

skillful designercanmakevery gooduseof topological skeletonsby havingan intuitive

understandingas to how theseskeletonsrelate to physical flow featureswhich give

rise to largescaleeffectssuchasflow separation,or drag and lift on lifting bodies.

Tensorfield topology hasnot beenstudied in much detail for the purposeof visu-

alization. Therefore we have devisedmethods, basedon mathematical foundations,

that allow,the_top.o|ogy.of.symmetrictensor.fields to.-be.determined._In two dimen-

sions, this processis straight forward, and reveals simple geometric pictures that

representtensor data locally as well as globally in a very simple manner, usually on

a surface [11, 12, 13]. In three dimensions,this processis significantly more diffi-

cult to carry out and theoretical notions are not easily derived. Yet, the results are
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strikingly simple and effective in those cases that we have studied so far. In fact,

tensor field topology is often simpler than vector field topology, a counter-intuitive

result given that tensor data appear more complex and rich than vector data sets.

Three-dimensional tensor field topology will be discussed in detail in Chapter 4.

Representation of Continuous Degenerate Points

Previous studies of tensor field topology only deal with isolated degenerate points in

two-dimensional case [38]. However, points of double degeneracy in three-dimensional

space may appear along lines or surfaces. In this dissertation, the concept of a

"control function" of a deviator is proposed. This function determines the existence

of degenerate points and assists in defining the lines and surfaces along which the

degenerate points lie. Following the study of the tensor field in the neighborhood

of degenerate points, one can display a full representation of the three-dimensional

tensor field.

1.4 Visualization Techniques for Vector and Ten-

sor Fields

In this section, we discuss a few new developments in visualization techniques and

show their advantages over the conventional methods. For vector field visualiza-

tion, the most straight forward method is drawing point icons; while for second-order

tensor._fields,._the_traditional .method. is_draw_ng.contour..plots for individual compo-

nents or glyphs for eigenvectors at discrete locations. All these techniques have their

limitations for visualizing continuous multivariate data sets. Streamlines (including

streamtubes and streamsurfaces) and hyperstreamlines are new visual representations

for vector and tensor fields, respectively. These techniques are designed especially for
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displaying multidimensional multivariate information while maintaining continuity.

Texture mapping is a very good way of rendering two-dimensional or 2D slices of

three-dimensional continuous data sets, both for vector and tensor fields.

1.4.1 Vector Fields

Point Icons

Point icons are useful in visualizing 2D slices of 3D vector fields. There are sev-

eral candidates such as arrows, wedges and hedgehogs. A comparative study shows

that arrows are most efficient at conveying vector information from volumetric data

sets [39]. This method is simple and straight forward, but is impractical when ap-

plied to the entire volume because of the visual clutter. Therefore, the density of

displayed arrows must be kept low. However, this make it difficult to comprehend the

underlying structure of the vector field by mentally interpolating adjacent arrows.

Figure 1.1 shows the velocity field of the flow past a circular cylinder. Arrows

represent the velocity vector at various locations. Color maps kinetic energy density.

Although valuable information is depicted, the display of merely 4_ of the arrows

renders the image overly cluttered and does not convey the intrinsic continuity of the

data.

Streamlines, Streamtubes and Streamsurfaces

Line icons are more efficient in the sense that they provide a continuous representation

of the data. Consider a vector field _'(_?, t) at time to, where streamlines are integral

curves satisfying:

ds (1.8)

where Z is the position in space and s is a parameter measuring distance along the

path. Streamlines are everywhere tangent to the flow g(Z, to).
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Figure 1.9: Ellipses with principal axes representing the two eigenvectors _ of an
elastic stress-tensor field.

of the axes of the ellipses/ellipsoids represent the two/three-dimensional eigenvector

fields (eigenvectors and eigenvalues) _ (Figure 1.9) of the tensor field. The advan-

tage of this representation is that it remains invariant under rotation. However, el-

lipses/ellipsoids suffer from the the same Iimitation, namely, visual clutter (Figure 1.9,

as arrows in vector fields.

Hyperstrearnlines

The topolo_" of a tensor field T(:_) is the topolo_' of its eigenvector fields _,:_(£),

i = t, 2, 3 [t@ Line icons representing eigenvector fields were introduced by Thier_-

Delmarcelle [11, 12 i and are able to embed the multivariate information of tensor

fields along trajectories in 3D space.

Definition 3 (Hyperstreamline) A geometric primitive of finite size sweeps along

the_longitudinal eigenvector_field,.fft, while stretchingJn the transverse plane under

the combined action of the two transverse eigenvectors, fit: and fit2. Hyperstrearntin¢_

are surfaces that envelop the stretched primitives along the trajectories. V_ color

hyperstreamlines by means of a u.ser-defined function of the three eigenvatue.s, usually

the amplitude of the longitudinal eigenvaIue. [38]
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Figure 1.10: 2-D and 3-D symmetric tensor fields.

are represented as bidirectional arrows.

5

Orthogonal eigenvector fields g,

Color and trajectory of hyperstreamlines represent the longitudinal eigenvector

field and cross-sections encode the transverse eigenvectors (Figure 1.11). Thus, hy-

perstreamlines fully represent tensor data along continuous trajectories. Similar to

streamlines, hyperstreamlines are generated by integrating the eigenvector fields. Hy-

perstreamlines are referred as "major," "medium," or "minor," depending on the

corresponding longitudinal eigenvector field that defines their trajectories.

1.4.3 Texture Mappings

Textures have been well known in flow visualization. The simulation of particle con-

vection leads to texture [43, 44, 45]. The clouds, smoke and other typical textures are

perceived in experimental visualization when many particles are used. However, tex-

ture mapping_is a..recently_developed technique_in_the area-of-scientificvisualization.

It renders streamlines/hyperstreamlines without integrating the vector/eigenvector

field and gives a continuous, space-filling view of a 2D field or 2D slices in a 3D field.

The drawback of texture mapping is that it's viewpoint dependent.

Many texture mapping techniques have been proposed. Van Wijk's spot noise
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Chapter 4 discusses the topology of 3D second-order tensor fields. First, a de-

composition procedure is introduced. It serves as a preprocessor to simplify the tenor

analysis. Second, the existence conditions of trajectories are discussed in Q-R plane.

Third, the representations of continuous degenerate points in 3D are defined by con-

trol functions. Finally, the basic structures about simple degenerate points in 3D

space are discussed.

Vector and tensor field visualization is a relative new yet very important area. Vi-

sual representations are most efficient ways for scientists and engineers understanding

complex physical phenomena. Chapter 5 summarizes the contributions of the current

research and discusses the future research issues.



Chapter 2

Review of Vector and Tensor Field

Topology

Topology is the basis for the visualization of vector and second-order tensor fields. The

purpose of visualization is to help scientists and engineers understand the behavior

of trajectories in a certain domain. Topology methods seek the surfaces in 3D or

the curves in 2D which divide the domain into regions where trajectories behave

differently. The set of dividing curves or surfaces defines the vector/second-order

tensor field and is determined by the critical/degenerate points in the field.

Thisrchap£er.isAntended..to give an overview, of.the-state of-the art of the research

on vector and second-order tensor field topology. It is divided into two parts. The

first part discusses the critical point theory and vector field topology in both 2D

and 3D space; the second part discusses degenerate point theory and research on the

development of tensor field topology.

3O
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Figure 2.1: An example of a 2D vector field

2.1 Vector Field Topology

A vector field V on a subset D is a function assigning to each point P of D a vector

with its tail at P [17]. Figure 2.1 shows an example in a 2D plane. Placement of

the vector V(P) with its tail at P is mainly a dramatic visual aid, which adds little

quantitative information about the field. The essential qualities of the vector V(P)

are its length and direction. Place all vectors with their tails at the origin, then V(P)

is described as:

V(P) = (F(x,y),G(x,y)) (2.1)

where F and G are real-valued functions of P = (x, y).
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2.1.1 Critical Point Theory

A vector field 2.1 determines a system of differential equations:

= F(z,y)G(x, y)dt

(2.2)

in some region D. The solutions form a family of directed paths, called integral paths

of the system, which are tangent to the vector field at each point P. There is exactly

one integral path that passes through each point P at which V(P) is not zero. The

picture formed by these paths is called the phase portrait of the system of differential

equations. The phase portrait is determined by particular points P, called critical

points 1, where V(P) = 0 and around which the integral paths gather [17].

The most important characteristics of the phase portrait are the number and

arrangement of the critical points, the pattern of the integral paths about each point,

and the stability of the critical points. The number and nature of critical points

won't change under continuous transformations. These are topological properties

of the system of differential equations. To characterize the topology, a number of

definitions and theorems are introduced in the following sections.

Winding Number

Consider a continuous vector field V on a closed path L with no zero on L. Starting

at a fixed point P on L, the vector V(P) will wiggle about during the trip around L

and return to the point P with some whole number of revolutions (Figure 2.2).

Proof: The vector V(P) starts at P and after traversing the path L, it returns

to the same position and with the same direction and length as the original V(P).

Therefore, the number of revolutions during the trip has to be integers.

This completes the proof. O

1see Chapter 1, section 1.2.1
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P

Closed path L

Figure 2.2: Winding number of a vector field on a close path L

Counting these revolutions positively if they are counterclockwise or negatively if

they are clockwise, the resulting algebraic sum of the number of revolutions is called

the winding number of V on L, denoted as W(L) [17].

Isolated Critical Points and Poincar_ Index

Definition 4 (Isolated Critical Points) If for a critical point P, there exists a

neighborhood of that vector field V in which the vector field vanishes only at P, then

P is an isolated critical point.

The Poincar6 index of V at P, denoted I(P), is defined as the winding number

W(7 ) of VonT.

Figure 2.3 shows some examples of Poincar6 indices of different types of critical

points.

. .Theorem-1 (The_.Poincar_-Index-,Theorem)- Let-Vbe- a continuous vector field.

Let D be a cell and 7 its boundary. Supposing that V is not zero on % then

w(7) = I(P1)+ z(P.) (2.3)

where P1, P2, ..., P,_ are the critical points of V inside D.
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Star I _ 1

Saddle I _ -i

Figure 2.3: Some examples of Poincar_ indices of different types of critical points.

The Poincar_ index measures a property of the vector field that depends only on

the behavior of V in an arbitrarily small area around P. It is only a crude means of

classifying critical points, since points of widely different types may have the same

index (Figure 2.3) [17].

Basic Building Blocks

All critical points are made up of sectors containing one or more of the three types

shown in Figure 2.4: an elliptic sector, where all paths begin and end at the critical

point; a. paxabolic_sector,.._where just._)ne .end.of.the. path ds 4t. the critical point;

a hyperbolic sector, where the paths do not reach, just sweep past the critical

point. These three sectors are the basic building blocks of the vector fields surround-

ing the critical points. The paths that divide each sector from the next are called

separatrices.
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Figure 2.4: Three basic sectors

_uvcic sa=mr

Figure 2.5: A typical isolated critical point
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A typical critical point may havesectorsof all three types (Figure 2.5). A critical

point may haveonly onetype of sector. Thosewith only parabolic sectorsare called

nodes. Thosewith only elliptic sectorsarecalled roses, for example,a dipole. Those

with only hyperbolic sectorsarecalled cross points. Saddlepoints are crosspoints

with four sectors. Still more complicatedtypes are possiblewith an infinite number

of sectors, and may be nonisolatedcritical points [17]. Here, only isolated critical

points with a finite number of sectorsareunder consideration.

2D Critical Points

Since a vector field vanishes at a critical point, the behavior of nearby streamlines is

determined by the first order partial derivatives of the vector field. More precisely,

the 2-D vector field _' = (vl, v2) near a critical point is given, in most cases, by the

first-order expansion

vl (dxl, dx_) ,_ °j--_dzl + o,2dx2

where dxl and dx2 are small distance increments from the critical point position.

Thus, the nearby flow pattern is completely determined by the 2 x 2 Jacobian matrix

J, whose elements

Ovi

Jij- Oxj (2.4)

(i, j = 1, 2), are evaluated at the critical point position.

Different patterns arise that are characterized by the eigenvalues of the matrix

J. Figure. 2.6. shows.how, the.eigenvalues of.& classify- a..critical point as an attract-

ing/repelling node, an attracting/repelling focus, a center, or a saddle. Real eigen-

vectors of J are tangent to the streamlines ending at the critical point. A positive

or negative real part of an eigenvalue indicates an attracting or repelling nature,

respectively. The imaginary part denotes circulation about the point.
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Repelling Focus Saddle Point Repelling Node

R 1 and R2> 0 R ! . R2<0 R 1 and R2 >0

I1 and I2 < >0 i 1 and I2 = 0 I l and I2 =0

Attracting Focus Crater Attracting Node

R 1 and R2 <0 R 1 and R2 =0 R 1 and R2<0

I 1 andI2 < >0 I1 andI2< >0 II and I2 =0

Figure 2.6: 2-D critical points. R1 and R2 denote the real parts of the eigenvalues of

J, I1 and I2 the imaginary parts.

In 2D flows, critical points near the surface of a body known as "attachments"

and "detachments" play a similar role as saddle points Figure 2.8. In 2D flows

near the surface of a body where the velocity is constrained to be zero, the flow is

mainly tangential and streamlines propagate parallel to the surface. The "detach-

ment" /" attachment" appear at point where the tangential velocity vanishes and a

streamline suddenly originates/terminates [53].

3D Critical Points

Simple criticalpoints of a 2D vector field give rise.to a basic.set of patterns shown in

Figure 2.6. In 3D, critical points can be classified by simple generalization [54] of the

2D classification shown in Figure 2.6. Alternatively, the classification can be done by

examining the invariants of the matrix J [22].

For a 3D vector field defined over a 3D domain, _* = (vl, v2, v3), the Jacobian
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Saddle $_dlc

Node

Figure 2.7: 3-D saddle/saddle/node.

matrix J is a 3 x 3 matrix whose elements are given by Equation 2.4, for i, j = 1, 2, 3.

However, J has three eigenvalues and three eigenvectors. Complex eigenvalues always

occur in conjugate pairs together with a third real eigenvalue. Again, real eigenvectors

are tangent to streamlines ending at the critical point, and complex eigenvalues denote

circulation.

Possible 3D patterns include purely attracting/repelling nodes with eigenvalues

being all real and all negative/positive, and they behave as 2-D attracting/repelling

nodes in each of the three planes spanned by pairs of eigenvectors; saddle-saddle-nodes

with eigenvalues .being _ll_ real_but one..having_ a. different-sign,.- and they- behave as

2-D saddles in two planes and as a 2-D node in the third plane; and spiral nodes with

one real and two complex conjugate eigenvalues, and have an attractive or repelling

third direction. Figure 2.7 shows an example of an saddle-saddle-node. Algorithms

for locating and extracting critical points can be found in [55, 56].
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Unsteady Flow Fields. Critical points in unsteady vector fields move and even-

tually merge or split. These phenomena are studied by tracking and representing

their trajectories over time [57], or by locating interactively critical points in nearby

space-time regions [58].

2.1.2 Global Topology

Vector field topology depicts schematically the behavior of a large collection of stream-

lines. The basic constituents of vector field topology are

• the critical points (Section 2.1.1) and

* the set of their connecting streamlines (separatrices).

The topological skeletons divide the field into regions topologically equivalent to

uniform flow. The representation is highly effective, due to the ease of inferring the

behavior of every streamline in the flow from these simplified graphs. Also, comparing

the flow at different time steps is greatly facilitated and can be automated using

syntactic pattern recognition [20].

2D Time-Dependent Fields

Streamsurfaces described in Section 1.4.1 can be used to visualize two-dimensional

unsteady flows that depend on time, Reynolds number or any other parameter with

the third dimension corresponding to the parameter value. Generated by stacking

instantarmaus topological skeletons, streamsurfaces are able to display the topological

transitions that may occur between consecutive steps.

Figure 2.9 shows the surfaces in a simulated flow about a 2D cylinder. Time

increases from back to front. The surfaces are obtained by connecting the streamlines

and the third dimension corresponding to time. Yellow and blue surfaces correspond
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Figure 2.8: Topological representationof the 2-D flow past a circular cylinder at two

different time steps. The flow is coming from the left; at -- attachment point; de =

detachment point; sp = saddle point; ce = center.

Image courtesy of J. Helman (Reference [10]).

to incoming and outgoing separatrices, respectively. Surfaces from attachment points

are colored orange and those from detachment are colored purple. The periodic

vortex shedding can be seen in the repeated development and movement downstream

of s_tdle-center pairs.

3D Separated Flows

3-D separated flows play a significant role in aerodynamics because separation sur-

faces are often associated with vortices and recirculation zones, which are important

structures of the flow far from the body [53].

As inthe 2-D_example.of_Figttres 2.8 and. 2.9,-the.fluid in 3-D separated flows

moves parallel to the body and then suddenly detaches from the surface, creating

vortices in the wake. The fluid can also reattach, causing recirculation regions similar

to the bubble in Figure 2.8. However, detachment and attachment in 3-D flows do

not arise at isolated points on the surface of the body, but are distributed along entire
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2D tensor field topology and covered some work in 3D space. We outline some of his

findings in this section.

A second-order tensor field T(Z) defined on an open subset E of R n is a mapping

T that associates with each vector :_ of E a linear transformation onto itself. In

Cartesian coordinates, T can be represented by n 2 components _j,i,j = 1,...,n.

And the transformation of its components follow the law:

T', = Z: nZ,,Z,qT,q (2.5)
p,q=l

under an orthonormal transformation/3 -- _ij of the coordinate systems (see Chap-

ter 1, section 1.2.1).

The equivalent representation of a tensor field T is using its eigenvectors and

eigenvalues:

ffi = Aigi (2.6)

where i = 1, 2, ..., n (n is the dimension) and the eigenvalues are numbered as A1 >

A2.... _ An. Eigenvectors are bi-directional due to their sign indeterminacy (Fig-

ure 1.10). When the tensor components of T are continuous and differentiable func-

tions of E, its eigenvectors and eigenvalues are continuous and smooth at most points

(except at degenerate points).

Any tensor T can be decomposed into the sum of a symmetric tensor $ and an

antisymmetric tensor A:

]
S = + T')

1

A = _(W- W')

where T' is the transpose of T. The eigenvalues and eigenvectors of S are real and

orthogonal. The antisymmetric tensor has only three independent components that
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form a tensorknown as "axial vector".3 The focusin the following discussionwill be

on 2D symmetric tensor fields with somepartial extensionin 3D space.

2.2.1 Degenerate Point Theory

Second-order tensor fields have many properties analogous to vector fields. Degener-

ate points are points where at least two eigenvalues are equal to each other 4. They are

basic singularities underlying the topology of tensor fields and play a similar role as

critical points in vector fields. Away from degenerate points, the hyperstreamlines 5

are smooth, continuous and non-intersecting trajectories. The tensor data in this

region are a diffeomorphism to a constant field (Figure 2.12). Therefore, degenerate

points and their vicinities are the only places that are topologically interesting and

they determine the behavior of the whole field.

Tensor Index

Similar to vector fields, the local behavior about degenerate points can be character-

ized by a tensor index. The notion of a "tensor index of a curve" is first introduced.

And the concept of "tensor index at a degenerate point" is derived from this notion

which is an extension from vector field topology.

The "curve" under consideration is a Jordan curve:

3The antisymmetric tensor field

T u_3 0 -coi
-_2 o;1 0

is equivalent to the vector field

_3

in the sense that a_l, a_2, and wa transform as the components of a vector field.
¢see Chapter 1, section 1.2.1

Sdefinition see Chapter 1, section 1.4.2
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Figure 2.12: Away from degenerate points, continuous and symmetric tensor fields

are diffeomorphic to constant data.

Definition 5 (Jordan Curve) A Jordan curve is a curve which is homeomorphic

to a circle--i.e., a piecewise-smooth, simple, closed curve.

And the "tensor index of a curve" is defined as below:

Definition 6 (Tensor Index of a Jordan Curve) Let E be an open set of R 2 and

let L C E be a Jordan curve. The index IT(L ) of L relative to a tensor field T E

CI(E), where T has no degenerate points on L, is the number of counterclockwise

revolutions made by the eigenvectors of T when traveling once in a counterclockwise

direction along L.

by

The index IT(L ) can be computed as follows:

The angle a between the eigenvectors of T and the x-axis (Figure 2.13) is given

which implies

tan 2a --
2T_2

T11 - T22

1 2T12
a = _ arctan T.11 - T22 (2.7)

Equation 2.7 defines a only locally and within an integral multiple of _. The differ-

ential of c_, however, is a well-defined, smooth, differential form in the whole domain

E:

da = (Tll - T2_)dT_ - T12d(Tll - T2_)
(Tu - T_2) 2 + 4T_2 (2.8)
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l ._jy _ _.i_....

X

Figure 2.13: The two orthogonal eigenvector fields gi, represented as bidirectional
arrows.

From Definition 6, the index IT(L ) of a Jordan curve L is equal to the line integral

I _L daIT(L ) -- _ +

where L + means that the curve L is traversed in a counterclockwise direction. Thus,

1 _L (Tll - T22)dT12- T12d(TI_ - T22)IT(L) = _ + (Tll - T22) _ + 4T_2 (2.9)

Equation 2.9 will prove extremely useful in analyzing degenerate points (Section 2.2.1).

Now a tensor index can be associated with degenerate points by enclosing them

with Jordan curves.

Definition 7 (Tensor Index at a Degenerate Point) Suppose that T E CI(E)

where E is an open subset of R 2. Let Zo E E be an isolated degenerate point of T and

let L C E be a Jordan curve encompassing Xo in its interior and no other degenerate

points of T. Then the index of T at the degenerate point :_o is defined as

IT(£o ) : IT(L )

The following corollary results from Definition 7:
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Corollary 1 The tensor index at a degenerate point of a tensor field T E C 1(E),

where E is an open subset of R 2, is an integer or half-integer quantity 6.

And there also exists a theorem similar to Poincar_ index theorem in vector fields

that deals with a Jordan curve encompassing several isolated degenerate points.

Theorem 2 Suppose that T E CI(E), where E is an open subset of R 2 containing a

Jordan curve L. Assume that there are no degenerate points on L but that there are

a finite number of degenerate points, xl,... ,x.n, in the interior of L. It then follows

that
n

IT(L) = _ IT(Zj) (2.10)
j----1

Basic Building Blocks

Hyperstreamlines in the vicinity of degenerate points also form several basic building

blocks as streamlines around critical points in vector field.

Consider an isolated degenerate point _0 of a tensor field T(:_). In most cases,

the eigenvector fields in the vicinity of x0 can be described in terms of three types of

angular sectors (Figure 2.14):

• hyperbolic sectors a,, where trajectories sweep past the degenerate point;

• parabolic sectors /_j, where trajectories lead away or towards the degenerate

point; and

• elliptic sectors "Yk,where trajectories begin and end at the degenerate point.

The number of hyperbolic, parabolic, and elliptic sectors are denoted as nh, rip, and

ne, respectively. Eigenvectors rotate in different directions, when passing through

sectors of different types along a closed curve that encompasses a degenerate point.

6Proof see Reference [38]
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Figure 2.-14:-Hyperbolic (ai),-parabolic (-flj);-and elliptic (Tk)-sectors at a degenerate
point.
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Sector Eigenvector Rotation

parabolic counterclockwise

elliptic counterclockwise

hyperbolic:

_i > 180 ° counterclockwise

c_i < 180 ° clockwise

Table 2.1: Rotation of the eigenvectors during a counterclockwise motion around a

degenerate point.

Table 2.1 shows the direction in which eigenvectors rotate during a counterclockwise

motion around a degenerate point.

Most degenerate points are built from a series of adjacent hyperbolic, parabolic,

and elliptic sectors. However, some degenerate points only have one type of sector.

A "trisector point" (Section 3.3.3) has only hyperbolic sector and a "star-node", has

only one parabolic sector. Furthermore, some specific points, namely centers and foci,

have neither types of sectors. In other words, they are made up of n_ -- 0 hyperbolic,

np= 0 parabolic, and ne = 0 elliptic sectors.

Hyperstreamline trajectories that separate adjacent sectors at a degenerate point

play an important topological role. Then "Separatrices" of a tensor field can be

defined by analogy with a similar concept from vector field topology (References [62,

63]).

Definition 8 (Separatrices) A separatrix of a tensor field T is a hyperstreamline

trajectory which lies on the boundary of a hyperbolic sector at a degenerate point of

T.

Separatrices lie on hyperbolic/hyperbolic, hyperbolic/parabolic, and hyperbolic/elliptic

boundaries, but trajectories along parabolic/parabolic, parabolic/elliptic, and el-

liptic/elliptic boundaries are not to be considered as separatrices. Also, adjacent

parabolic sectors are always merged into a unique parabolic sector.
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2D Degenerate Points

For a 2D symmetric tensor field,

degenerate points satisfy the conditions:

{ = 0T12(x ) 0

The vicinity of a degenerate point can be expressed as:

,_, a(x - Xo) + b(y - Yo)2

TI_ _, c(x - Xo) + d(y - Yo)
(2.11)

where x_ is the location of the degenerate point and

1 0(Tll-T22)
a : _ ox :go

C= _1"_2oOx

b = l O(TII-T22)]
2 Oy [£o

d= '_ :_°

(2.12)

An important quantity for characterizing degenerate points is

5 = ad - bc (2.13)

where 5 is invariant under rotation.

For simple degenerate points (5 -_ 0) at x_, the tensor index is defined as:

1 1

IT(2O) = -_sign(5) = :t: 5 (2.14)

It follows that there are only two patterns possible for simple degenerate points

(Figure 2.15):

• Trisector point: 5 < 0, IT(£O) = -½ and na : 3, ne : 0 and np = 0,

* Wedge point: 5 > 0, IT(Z0) = ½ and r_h ---- 1, ne = 0 and np= 1 (special case

when two separatrices are equal, then np -- 0)
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S 1

  sec or/l
point /

S 2

8<0

IT = -1/2

S 3

S 1 S 2
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points

8>0

IT= 1/2

S S 2

Figure 2.15: Simple degenerate points. _ = ad - bc _ 0 and I T = tensor index.

Trisector ((f < 0) and wedge ((_ > 0) points. Trajectories Sk are separatrices.



-- 54

Extensions to 3D Degenerate Points

In this section, some extensions of the theory of degenerate points to 3D space will be

discussed. In this case, there are three real eigenvalues 7, hi, and three orthonormal

eigenvectors, 4, i = 1, 2, 3, at each point of space.

Various types of degenerate points :g0 exist:

A double degenerate point:

and a triple degenerate point:

i = 1, 2, 3.

= (2.15)

= (2.16)

_l(:g0) = /_2(:g0) = /_3(2_0), (2.17)

respectively, s

Consider double degenerate case where two eigenvalues are identical --for exam-

ple, ,_l(x0) = ,_2(:g0) > A3(:g0). The tensor field is degenerate in the plane orthogonal

to _73(:g0) within which locally two-dimensional patterns such as wedge points, trisec-

tors, and multiple degenerate points can occur. Figure 2.16 represents the tensor field

around a wedge point and a trisector in the plane orthogonal to _73(:g0).

In fact, the patterns in Figure 2.16 should be drawn on a surface normal to the non-

degenerate eigenvector field, v3(:g). However, when close enough to :go, this surface

can be approximated with arbitrary precision by its tangent plane P at x0. (Away

from :g0, trajectories depart from P.)

Let Al(:g0) = A2(:g0) = )_, B ° = {_o}, i,j = 1,2,3, be the rotation matrix that

brings the third axis of the coordinate system along e'a(:go) --the unit eigenvector

THere, we only study symmetric tensors.

8Recall that Al(x) _> A2(Z) _> Aa(x) at every point _.
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Figure 2.16: Thre_dimensionalwedge.pointand trisector.around a degenerate point
where A1 = A2 > Aa.
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associatedto Aa(£0)(Figure 2.16). TransformingT by the rotation B° = {3o} leads

to new components
3

E oo
p,q= 1

At :_0, T' is diagonalized--i.e.,

T'(10) = {T_j(x0)} = 0 A 0

00 A3

, 3 0 ' = 0 at the locationLet x i = _p=l _/°p(xp - xi ), i = 1, 2, 3, be the new coordinates, x_

of the degenerate point x0. x_ and x_ run along the plane P while x_ goes in the

direction normal to P. This new frame of reference is shown in Figure 2.16, where

we translated the origin away from the degenerate point for clarity. The components

of T' in the vicinity of x0 can be expanded to first-order terms as

3

+ E
k=l

' _ Tensor patterns can be analyzed in the plane Pwith i,j,k = 1,2,3 and chj k = ox;,"

(Figure 2.16) by letting x_ = 0 and considering the 2 × 2 block

T_ 1 T_2 = A + oLmx _ + _u2x2 o_xl + a_2x2

T_2 T_2 ' , , , , , , ,O/121X 1 -_- 0t122X 2 /_ -Jr- (:2221X 1 Jr- OL222X 2

The important parameter is _ = a'd' - b'd, where a' = _(_ml' - a221),' b' = _(a1121, _

a_22) , c' = a_21, and d' = a_2 _. Trisectors, wedge points, and multiple degenerate

points correspond to6 _< 0,Z >_0, and 5 =.. 0,xespectively.

The discussion above concerns degenerate points where Al(io) = A2(io) > A3(x_).

The case of degenerate points characterized by Al(Zo) > A2(io) = Aa(x-'0) is similar.

However, fully three-dimensional patterns that exist in the vicinity of degenerate

points where AI(Zo) = A2(Zo) = A3(io) - A will be analyzed in Chapter 4.
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2.2.2 Global Topology

Tensor field topology describes the behavior of a collection of an infinite number

of hyperstreamlines in the field. The basic constituents of second-order tensor field

topology are

• the degenerate points (Section 2.2.1) and

• the set of their connecting hyperstreamlines (sepaxatrices).

The technique to extract the topology of tensor fields and to study topological

transitions is similar to that of vector fields. Tensor fields are visualized by present-

ing their eigenvector fields individually. Each eigenvector field is represented by a

topological skeleton obtained by locating degenerate points and integrating the set of

their connecting separatrices.

2D Time-Dependent Fields

In this section, an example of a stress tensor field in a 2D flow past a cylinder is

illustrated. The purpose of visualizing this field is to study its topological transitions.

Fluid elements undergo compressive stresses while moving with the flow. Stresses are

described mathematically by the stress tensor, which combines isotropic pressure and

anisotropic viscous stresses.

OVa

a : --P_ij "_ Veij "_- ASij OX k

= 1, 2, 3, p = pressure, vi and vj = velocity, and v and A =_--_-+ _---._ i,jwhere e,j -- oz_ oz_ ,

viscosity coefficients.

Both eigenvalues of the stress tensor are negative and the two orthogonal eigenvec-

tors, v'l and _72(Equation 2.6), are along the least and the most compressive directions,

respectively. At a degenerate point, the viscous stresses vanish and both eigenvalues

are equal to the pressure; degenerate points are points of pure pressure.
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The first step for understanding the structure of the stress-tensor field consists in

tracking the motion of degenerate points over time. Degenerate points are located at

each time step.

Figure 2.17 shows results at a specific instant in time. The dots mark the location

of simple degenerate points. The top view shows the overall data while the bottom

view focuses on the region close to the body. The colored background encodes the

magnitude )_ of the most compressive force, from very compressive (red), to mildly

compressive (orange, yellow, green), to little compressive (blue). Wedge points and

trisectors are represented as black and white dots, respectively. It is shown clearly

that wedge points are situated in the wake about the cylinder axis while trisector

points are located off-axis. The images in Figure 2.17 belong to two video clips that

visualize the motion of degenerate points over time.

Topological Skeletons

Topological skeletons are obtained by detecting degenerate points and integrating the

set of their connecting separatrices. Trisector points in tensor fields play the topo-

logical role of saddle points in vector fields. As shown in Figure 2.18, they deflect

adjacent trajectories in any one of their three hyperbolic sectors toward topologi-

cally distinct regions of the domain. Wedge points possess both a hyperbolic and a

parabolic sector. They deflect trajectories adjacent in their hyperbolic sector, and

terminate trajectories impinging on their parabolic sector. The texture represents

the most compressive eigenvector of the stress tensor (v2)- Color encodes as before

the magnitude of the compressive force_ (_2-), from. most_compressive (red) to least

compressive (blue). The structure of the tensor field is illustrated by superimposing

the topological skeleton of 62.

The orientation of the eigenvectors at any point in the plane from the topological

skeleton can be inferred as follows: hyperstreamlines curve their trajectories so as to
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follow the shape of the separatrices, bending around wedge points. In Figure 2.18 for

example, wedge points are located around the cylinder's axis and trisectors quickly

move off-axis. The separatrices that emanate from the trisector points delineate the

global structure of the most compressive eigenvector; hyperstreamlines oscillate about

the cylinder's axis, presenting a distorted, wave-like pattern with sharp turns at the

wedge points. 9

2.3 Chapter Summary

This chapter is an overview of vector and second-order tensor field topology. It

presents the state of art in the theory of vector and second-order tensor field topology.

Vector field topology has been studied for many years dating back to 19th century

while second-order tensor field topology has not been studied until recently due to its

complexity.

Vector fields are characterized by their critical points and the set of separatrices

connecting these points. In the vicinity of a critical point, the local topological struc-

ture is determined by the Jocobian matrix and classified primarily by the Poincar@

index. There are six basic patterns of a simple critical point in a vector field:an

attracting/repelling node, an attracting/repelling focus, a center, or a saddle. By

integrating the separatrices emanating from critical points, a topological skeleton can

be constructed to depict the global topology of a vector field. Topology theory in

3D space can be studied similarly. The critical points in 3D can be classified in its

three eigenvector planes. Applications to 2D time-dependent flow and 3D separated

flows show that visualization technique such as streamlines, streamsurfaces combined

with topology can capture the key properties such as vortices as well as provide a very

insightful picture of a vector field. Yet, an important subject as how to quantitatively

9A video of this animated flow can be requested from Prof. Lambertus Hesselink
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measure the closeness between different vector fields has not been addressed. This

study will be covered in Chapter 3.

Second-order tensor fields have many properties analogous to vector fields. Degen-

erate points are basic topological elements and play a similar role as critical points in

vector fields. In the vicinity of a degenerate point, the local structure is determined

by its invariant (f. Based on the Poincar@ index, the concept of a tensor index is

developed and classifies the degenerate points. Because of the sign indeterminacy,

the simple degenerate points in 2D only have two basic patterns: a trisector point

and a wedge point. The pattern of a double degeneracy in 3D can be studied simi-

larly after an appropriate rotation in space. A topological skeleton of a tensor field

can be obtained by connecting degenerate points with their separatrices. It depicts

the global topology structure of a tensor field. An example of a 2D stress field in a

time-varying flow is given; the global structure and its transition are shown. Topics

concerning topology in 3D space, like the structure of a triple degenerate point, the

importance of a deviator and 3D representation of non-isolated degenerate points,

will be discussed in Chapter 4.



Chapter 3

Feature comparisons of vector

fields using Earth Mover's Distance

Vector fields have numerous applications in physical sciences. The concept of critical

points in vector fields has been well studied and has proven to play a key role in

vector field topology. However, a formal study on the quantitative measurement of

similarities and differences between vector fields using topology has not been done.

In fluid dynamics, simplifications are necessary in the numerical simulation process

in order to compute analytical solutions of flows over complex bodies in a reasonable

amount of time. Researchers formulate various models with the hope of capturing

the essential features of real flows. For example, Reynolds stress and velocity fields in

turbulent flows are almost impossible to solve analytically. Many turbulence models,

both linear and nonlinear, have been suggested to better capture real flows (Chap-

ter .1, section L3.3_._Howevex, the_xnodels_for.a large, part havebeen quite arbitrary.

In order to test the validity of a certain model, a comparison between the compu-

tational and experimental results are necessary. However, a metric for the closeness

between the computational and experimental results remains unsolved. Traditionally,

a series of charts for each component of the Reynolds stress and velocity vector has

63
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been drawn. It is perceptually nonintuitive as well as difficult to show the intrinsic

structural differences between the two fields. Past study in our group has focused on

the geometric structure of vector and tensor fields [9] [38] [15]. However, a topolog-

ical property of a vector field is a property possessed by this vector field and all its

topological equivalents. The dissimilarity of their appearances sometimes fools the

human visual system. For example, vector fields 15 and 16 in Figure 3.10, are two

swirling flows that have the same topological structure yet appear quite different to

a human observer. Therefore, a quantitative measurement for comparison of vector

fields is essential.

Earth Mover's Distance (EMD), first introduced by Yossi Rubner et al. for fast

retrieval of similar images in a large data base [64] [65], computes the minimal amount

of work that must be performed to transform one distribution into the other by moving

"distribution mass" around. In our vector field analysis, the feature distribution is

defined as the set of critical points and their corresponding (_, /_ parameters (to be

defined later) of a vector field. After extracting the feature distribution, a set of

EMDs are computed. Multidimensional Scaling (MDS) was originally used for color

perception and spatial frequency discrimination [66]. Here, with the help MDS, we

can display the similarities and differences between selected vector fields.

3.1 Clifford Algebra

In 1876, Clifford introduced "geometric algebras" [67] which is now known as "Clif-

ford algebras". It is a generalization of_Grassman!s exterior.algebra and Hamilton's

quaternions, both of which sought to capture the geometric and algebraic properties

of Euclidean space [68].

Roughly speaking, a Clifford algebra is an associative algebra with unit element

1 into which a given Euclidean or Minkowski space may be embedded, in which the
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corresponding quadratic form may be expressed as the negative of a square. By using

Clifford algebra, the geometry of a complex field can be described as a multiplication

of simple vector fields.

Definitions

Definition 9 (Quadratic Form) Let V be a finite-dimensional vector space over

the scalar field F, where F = R or C. A quadratic form on V is a mapping Q : V -+ F

such that

Q(Av) = A2Q(v), A _ F, v c V,

and the associated form

B(v,w) = ½{Q(v)+Q(w)-Q(v- w)}, v,w_ V,

is bilinear.

Definition 10 (Quadratic Space) When a quadratic form Q on V exists, the pair

(V, Q) is said to be a quadratic space.

Definition 11 (Clifford Algebra) Let (V, Q) be an arbitrary quadratic space, A

be an associate algebra over F with identity 1 and v: V --_ ,4 an F-linear embedding

of V into A. The pair (,4, v) is said to be a Clifford algebra for (V, Q) when

(i) A is generated as an algebra by v(v): v c V and AI: A E F,

(ii) (v(v)) _ = -Q(v)l, all v E V.

Remark:. condition..(i) is.a minimality, restriction on-the 'size' of A and condition

(ii) ensures that A is an algebra in which there exists a 'square root' of the quadratic

form-Q [68].

These definitions are basic to construct a "geometric algebra" for vector field

analysis. For a usual 2D vector space V, a four-dimensional algebra G2 can be
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constructedwith the basis as:

(10/ (0, i----

0 1 1

The rules of multiplication are:

(01)(10), el = , e2 =

0 1 0 0 -1

lej = ejl = ej j = 1, 2 (3.1)

12 =ej2 = 1 j = 1,2 (3.2)

i 2 = -1 (3.3)

ele_ = e_el = i (3.4)

This kind of construction can be extended to any dimension n, and details can be

seen in References [68, 69].

3.2 Vector field representations using Clifford Al-

gebra

In [70, 71], Sheuermann et al. introduced Clifford vector fields which represent vector

fields in the four-dimensional algebra G2 introduced in Section 3.1. The usual vectors

(x, y) E R 2 are identified with

xel + yes C E 2 C G2

and the complex numbers a + b/E C with

al +bi EG_

For a real vector field

v : R 2 --_ R _
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the clifford vector field is set as

(x, y) _-_ (vl, v2)

• E 2 _ E 2

-= xel + ye2 _-_ vie1 + v2e_

A Clifford vector-field is just a multivector field with values in R 2 C G2

v • R 2 _ R 2 C G2

Let z = x + iy, 2 = x - iy be complex numbers in the Clifford algebra.

means

1

_=5(z+_)

(3.5)

This

(3.6)

We get

_(_) = _(_,_)_ + _(_,y)_

(1 1 (z_2))el= _ (z+_),_
1

-iv_(2(z+2),_(z-2) )

= E(z, 2)el

el

Generally, a linear vector field can easily be shown to be:

_(_) = E(z,_)_

= (az + b2+ c)el

(3.7)

(3.8)

(3.9)

where a, b, c C C.
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Let E - C 2 -+ C be a complex polynomial so that _ = E(z, 2)el. Let Fk • C e -+

C, k = 1,..., n be the irreducible components of E, so that E(z, 2) = I-I_=l Fk, then

an arbitrary polynomial vector field with isolated critical points can be expressed as:

_(r) = E(z, z)el
n

= 1-[ (akz + bk2 + ck)el
k---1

(3.1o)

where zk is the unique zero of akz -+-bkz + Ck.

3.3 c_-/3 space analysis

In Chapter 2, six basic patterns of simple critical points are discussed. They are

determined by the eigenvalues of their Jacobian matrix. More convenient parameters

based on eigenvalues will be introduced in the following section and they actually

lead to the discovery of two more basic patterns.

3.3.1 Introduction to a-/_ space

For a linear vector field _' = (az + b2 + c)el, let a = al + a2i and b = bl + b2i.

Eigenvalues of the Jacobian around its critical point z0 are

Define two new parameters:

o_=bl

= sign([a[ 2 - b_)_/llal _ - b_l

and

(3.11)

(3.12)
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Be_l_l_irg _ S_le _.nt B_p_./.rg _ Bepe_Ll_iz_ _
O_>O O{=O O{>O OL>O

IB<o IB>o !B:o 13>o

._::tz'acr.ingB:x:,._ c_'_ter At:tza_rg a:ar .'L'---t:r'd,:_:..ir__b:_
0{<0 O.=O a.<O (_<0

I_<o !B<o IB:o 13>o

Figure 3.1:8 basic patterns for simple critical points

Criteria for basic patterns of simple critical points are:

_<O,a=O _ C

_3< O,a >0 _ RF

_<O,a<O _ AF

_=O,a<O _ AS

_=O,a>O _ RS

> o, > Sa

/3> 0, a >0 ¢=_ RN

_3> 0, a < 0 ¢=:v AN

where C stands for center, RN for node, AN for attracting node, RF for repelling

focus, AFfor attracting focus, St for star and Sa for Saddle, see Figure 3.1. Compared

to Figure 2.6, two more patterns: attracting and repelling stars are added. After

careful study, it is found that the original six patterns only cover cases for which
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< 0 and _ > 0 with _ = 0 left out. The/3 -- 0 case is proved to be important in

order to get a smooth transition between different vector fields (see section 3.3.2) 1

The usefulness of (_ and _ parameters is not limited to the classification of critical

points. They are essential in vector field comparisons (Section 3.4). Therefore, a new

space c_ - _ is introduced with _ and fl being abscissa and ordinate, respectively. It

is defined as a positive-definite quadratic space with norm

for all a C a - _. And the distance of a from b (a and b are two points in a - _.) is

Ja- bJ= - b)-(a - b)

The basic patterns are now points located at (c_,/3) in this new space. This is

a true metric with normal Euclidean distance and vectors in this space obey all the

rules defined for a regular 2D Euclidean space.

3.3.2 Circular relationship between eight basic patterns for

simple critical points

Lemma 1 Given a dynamic system governed by a vector field (F(x, y), G(x, y) ),

dx
- F(x, y)

dt

dy
- G(x,

dt
(3.13)

Let xo be a simple critical point in the field, and A1 and A2 be the eigenvalues of the

Jacobian matrix of Zo.

1There are actually a family of logarithmic node corresponding to/3 = 0 case, but the choice of
/_ (see section 3.3.2) is rather random, so we just use/z = 0 as a representative here
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where

a = 0F(=,_) b=OF(=,_)
Ox _.o' Oy _o

c= °c(=,_) d=°C(=,y) oOx _o _

Then: 1) if _l and A2 are real and distinct, i.e. A1 = o_ + _ andS2 = (_- fl (for

definitions of (_ and _ see section 3.3.1), there exists a nonsingular real transformation

reducing system 3.13 to the canonical form

_ ,_ _x+ayet

2) if )_1 = )_2, i. e o_ is arbitrary and _ = 0, there exists a real transformation reducing

system 3.13 to the canonical form [62]

,_ #x + _y
dt

where # = O if b = O and c = O in system 3.13, and # # O if b and c do not vanish

at the same time, in which case # may be any number.

3) if )tl and )_9_are complex, i.e. A1 = oL+ i_ and A2 = o_ - i_ (o_ arbitrary, _ _ 0),

there exists a real transformation reducing system 3.13 to the canonical form [62]

dt

Proof: Given a dynamic system 3.13, in the neighborhood of a simple critical

point _0, the vector field can be approximated as a linear field with

F(z, y) ,_ ax + by

and

G(x, y) ,_ cx + dy
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Let the transformation matrix be:

The new Jacobian is:

For case 1),

Because J' = SJS -1 ==_ J'S = S J, then

)_2P_1 ,_2P22 ap21 + cp_ bI_l + dp22

Equate left-hand side to right-hand side,

pll(a- A1) +pl_c=0, pl_b+p_2(d- A1)=0 (3.14)

and

p21(a - A2) + P22C = 0, p21b + P22(d - A2) = 0 (3.15)

If both b and c are zero, then the original system is already in its canonical form;

otherwise, assume c # 0 and the nontrivial solution takes the form:

P._. = __a.=.a P_az= 3_:__ (3.16)
Pll C ' P21 C

Clearly, the determinant of S is not zero and is a nonsingular transformation. Because

A1 = a + _3 and ,_ = a -/3, Equation 3.16 can be rewritten as:

___ = _+__A__ m--x= a-_-a
pll c ' p21 C

(3.17)
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Choose Pll = P21 = c, and x and y can be transformed into X = pllx + P12Y and

aY =A2YNowletX=u+vandY=u-v,Y = p2lx + P22Y. Then _ = A1X and -g/-

then

du 1 (dX dY
dt -- 2 -_+-_)

= }(A_X +A2Y)

1

= _[(_ + Z)(u + v) + (_ - Z)(u - v)]

-- ±(2_. + 2Zv)
2

= c_u +flv (3.18)

Similarly,

dv 1 (dX dY
d-7 - 2 dt dt )

= I(A1X- A2Y)

= 2[(_+ _)(u + _) - (a - _)(u - _)]

= 2(2flu+2av)

= flu + av (3.19)

This new system is in the canonical form and is transformed from the original system

by a matrix

with determinant = tic _ {).

Case 3) can be proved similarly except Am= (_+ifl, A2 = (_--ifl, and let X = u+iv,

Y=u-iv.

Case 2) needs some special care. Since A1 = As = c_, it is in its canonical form if

both b and c vanish, and # = 0. Now suppose that b and c are not both zero, say
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w

c ¢ 0, then from the first equation of (3.16),

P12 "_1 -- a

Pll c

and there exists no p_j satisfying equation 3.14 with nonvanishing determinant. Thus

choose Y = #y with/_ a random real number, then the new system is

dX

dt
dY

= #X +aY
dt

(3.20)

with a nonsingular transformation matrix

C o_--a /0 #

The trajectory here is a logarithmic node with a phase portrait satisfying y --

_x ln(cx) where c is an integration constant.

This completes the proof.

Lemma I shows that as/_ goes from -oc to 0 to _, there are actually a family of

logarithmic nodes (p -- 0 is a special case and the pattern is a star) corresponding to

the same set of a and/3 with/3 = 0 (Figure 3.2). If # = 0, the original system is in

its canonical form and the pattern is determined to be a star. If the original system

is not in its canonical form, then _t -_ 0 and is arbitrary, we will choose # -- a for

convenience. Also, the choice of p does not affect the values of a and/3.

Theorem 3 The ratio R = _ determines the local topological structure of a simple

critical point.

Proof: The proof is divided into three parts corresponding to the three cases in

Lemma 1.
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(a) (b)

(c)

(d) (e)

Figure 3.2: From (a)-(e), p decreases from positive (a), (b) to zero (c) to negative
(d), (e)
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Case 1) A1 and A2 are real and distinct, then the system can be reduced to its canonical

form:

dx aX + _Y

-_ -

dY _3X + aY

The trajectory can be obtained by solving function:

dX aX + _Y (3.21)
dY _X + aY

For a :_ 0, divide both the numerator and the denominator on the right hand side in

equation 3.21 by a,

dX X + RY (3.22)
dY RX + Y

For a -- 0:

dX _Y
m

dY /3X

Y

X
(3.23)

Similarly, in case 3) A1 and A2 are complex, and the system can be reduced to its

canonical form:

d___x = aX-f_Y

d_

"_dY _- 3X + aY

The trajectory can be obtained by solving function:

dX_ aX - 8Y (3.24)
dY 3X + aY

For a _= 0, divide both the numerator and the denominator on the right hand side in

equation 3.24 by a,

dX X - RY
_ (3.25)

dY RX + Y
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For o_ = O:

dX _Y

dY /_X

Y
I

X
(3.26)

The operation for these two cases does not change the equation but uses the parameter

R instead to characterize its phase portrait.

For case 2) A1 = A2, there are two cases:

a) #=0,

dX aX

dY c_Y

X

Y
(3.27)

b) p#O,
dX aX

dY /zX + a Y

Because p is arbitrary (Lemma 1), choose p = a,

dX

q

dY

aX

#X + aY

aX

aX + aY
X

X+Y

(3.28)

(3.29)

In this case, fl = 0 and the value of a does not change the trajectory, and it can be

characterized as R = O.

This completes the proof.

Corollary 2 An alternative quantity to determine the local topological structure of a

simple critical point is the angle 0 = tan-t(_).

Proof: From theorem 3, a local topological structure of a simple critical point can

be characterize by _ which is the same as tan O (Figure 3.3). For 0 < O < 2_, there

is a unique O corresponding to every R.
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8) (_

Figure 3.3: The point (c_, _) and its equivalent angle e in c_ - _ space.
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This completes the proof.

The advantage of using e instead of R is that

7r

• whena=O, 3=l==aR=oc, e=_ and

• whena=0,_=-l_R=_oc,(_= 3_
2

Thus, all the values corresponding to various patterns are finite. The value 0 will be

used for the rest of investigation.

Based on their a and _ values, different dynamic systems have their corresponding

points located in different regions of a-/3 space. From theorem 3, a and/3 themselves

alone do not determine the trajectory of a dynamic system, the key value is their

ratio. Therefore, a normalization procedure for a and/3, namely,

O_t _ a

/3, _ (3.3o)

preserves the dynamic system. For the rest of the discussion, all the a's and 13's have

been normalized. The usefulness of normalization will be seen in calculating EMD

(Section 3.4).

Corollary 3 For normalized points in a -/3 space, the unit circle can be divided into

(Figure 3.4:

1) a = 1, /3 = 0 and 0 = O, a repelling star or a repelling logarithmic node,

2) _ < a < 1, 0 </3 < L2 and 0 < 0 < ¼zr, a repelling node,

3)- < a < v_2, v_ <13< 1 and ¼r < O < _Tr, a saddle,

4) -1 < < 0</3 < and3_7r < e < zc, an attracting node,

5) a = -1, /3 = 0 and 0 = 7r, an attracting star or an attracting logarithmic node,

6) -1 < a < O, -1 </3 < 0 and zc < 0 < 3zc, an attracting focus

7) a=0,/3=-1 and O-- 3_7_, a center,

8) 0<a<1, -1 <_<0 and 3_ < _ < 27_, a repelling focus
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_r

Figure 3.4: Basic patterns for critical points in c_-/_ space; C for center, RN for node,

AN for attracting node, RF for repelling focus, AF for attracting focus, St for star,

Sa for Saddle and R for regular point

3.3.3 Simple critical points in a-/3 space

For a vector field with one simple critical point at a?0, it can be approximated as

_= (v=(z - zo) + vx_(y- yo),v_(x - xo)+ v_(_ - yo))_

where

Vxx --_ YxY -_ Oy _.o

_o -_Y _ov_ =?3YX_ Ox

Also, in Clifford algebra, this field can be represented by

(3.31)

(3.32)

g = (az + b2 + c)el

where a, b, c E C and z = x + iy, 2 = x - iy. Using the property:

e_=l, ele2=i= --e2el

2see Chapter 2
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and let a = al + asi, b = bl + b2i and c = Cl + c2i where al, as, bl, bs, clandc2 6 R.

(al + a_i)(x + iy) -4- (bl + b2i)(x - iy) + cl + csi

(alx - a2y + blx -4- b_y + c_) + (aly + a2x - bly -+-b2x + c2)i

(alz - asy + blx -4-b2y + cl)e_ + (aly + a2x - bly + _x + c2)ele2

[(al x - asy -4-bl X -4-b2y + cl)el) - (aly + a_x - bly -4-b2x -4- c2)e2]el

Therefore,

vxzx + vz_y - (vzzxo + Vzuyo) = (at + bl)X + (b2 - a_)y + cl

v_xx + v_ - (VyxXo + vu_yo) = -(as + _)x + (bl - al)y + c2

Equating all the x and y terms:

and

al+bl -- vxz

bl -al Vyy

-(as+b2) vyz

b2 -as vxy

cl = -(vxxzo + vx_,yo)

Solve equations 3.33,

c2 = -(v_,_Xo + v_yo)

1
al -= _(Vxx -- Yyy)

1
as = -5(vyx + v:_)

bl + v_ )=½(v=

52 - v_)=

(3.33)

(3.34)

From equations 3.11 and 3.12, a pair of (_, 3 values are readily given. After a

normalization procedure 3.30, the corresponding point of the vector field 3.31 can be

located on a unit circle in c_-fl space (Figure 3.4).
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3.3.4 Regular points in _-/3 space

If a vector field on E does not have a singular point, then it is diffeomorphic to a

constant field

= const, el.

where a -- 0 and b = 0. This gives (_ = 0 and/3 -- 0 which corresponds to the origin

in the _-/3 space.

3.3.5 Multiple critical points in c_-f_ space

An arbitrary vector field can be represented as a multiplication of linear fields (Sec-

tion 3.2):

= E(z, )el

= H (akz + bk2 + Ck)el (3.35)
k----1

where zk is the unique zero of akz + bk2 + Ck. Around each simple critical point Xk,

a vector field can be also expressed as g(:_) = Jk(Z- Zk) using its Jacobian Jk. In

section 3.3.3, a conversion from a vector field in regular space to a Clifford vector

field is given. All the ak's, bk's and ck's, therefore, can be computed separately at

each critical point zk. And a complex field with multiple critical points corresponds

to multiple points (c_t,/3t), ((_2,/32),..., (an,/3n) in (_-/3 space. For example,

_:22el

is a dipole which has two points both located at (1, 0) in c_-/3 space (Figure 3.5).

3.3.6 The Growth of a Vector Field

A Clifford vector field
}2

_(r) = H (akZ -}- bk2 -+- ck)et

k--1
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where n is the total number of critical points in this field.

This energy here is a quantity that characterizes the critical points of a vector field.

It is different from the physical energy. The concept "work" is used to measure the

energy differences between two vector fields or the amount of energy used to transform

one vector field into the other.

Definition 14 (Work) For two vector fields with feature distributions

{(_1,_1),(_2,_), . . . , (_,, _,) }

and

! !{(_1,_), ' , ...,(_2,Z;), (d,_-)}.

The amount of work necessary for transforming one vector field into the other is

defined as: Work = y/Zi_l ((ai- a[) 2 + (_3i -/3_)2).

Intuitively, given two feature distributions, one can be seen as a set of discrete point-

objects with a certain amount of mass of earth spread in space, the other as a collection

of holes in the same space. The work measures the least amount of energy needed to

fill the holes with earth and is called the Earth Mover's Distance (EMD).

Computing the EMD is based on a solution to the old transportation problem

from linear optimization. [72] This is a bipartite network flow problem which can be

formalized as the following linear programming problem: Let I be a set of suppliers,

J a set of consumers, c_j the cost to ship a unit of supply from i C I to j E J

qJ = v/(-_- -j)_ + (Z_- Z,)_

and it is the same as the Euclidean distance d/y = I1_ - g_l[ in a-_ space, h critical

point either exists as a whole or does not exist, it can not be split. Therefore, the
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flow fij can only be 0 or 1. We want to seek a set of fij that minimizes the overall

cost:

EMD(x,y) = rnin_-_ _ cijfq (3.40)

ielieJ

subject to the following constraints:

f_j >_ 0 iEI, jEJ (3.41)

fo = Yi, j E J (3.42)

fij _< zi, i E I (3.43)

jeJ

EYJ = Ex_ (3.44)

j_J i_I

Where xi is the total supply of supplier i and yj is the total capacity of consumer j.

Constraint (3.42) allows shipping of supplies from a supplier to a consumer and not

vice versa. Constraint (3.43) forces the consumers to fill up all of their capacities

and constraint (3.44) limits the supply that a supplier can send as a total amount.

Constraint (3.44) is a feasibility condition that ensures that the total demand equals

the total supply, in other words, the distributions have the same overall mass and the

EMD is a true metric.

For a set of vector fields, they don't always have the same number of distributions.

In order to satisfy constraint (3.44), we can create constant fields 1 with a -- 0 and

= 0 to make the supply equal to the demand without changing the vector fields.

For example, the supplier field is

gl =.(2z÷(l+i)2+(-16_÷.8i))((1_-i)z+5"+(4=4i))(z÷2iY.+(=4+12i))el. (3.45)

The critical points and their corresponding a, _ values are listed in Table 3.1.

There are three critical points in this field (Figure 3.7). And the consumer field is

g_=(iz+(4+4i))(z+25+(12+4i))(2z+(-8-8i))(2+(4-4i))_el (3.46)
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Order of critical point Location (a,/3)

Simple (4, 4) (0.5, 0.866)

Simple (-4,-4) (0.5774, 0.8165)

Simple (-4, 4) (0,-1.0)

Table 3.1: Locations of three critical points and their corresponding c_,/3 values; Order

of critical point: the order of the lowest non-zero terms in the Taylor expansion of a

critical point.

Order of critical point Location (c_,_)

Simple (4, 4) (0.0, 1.0)

Simple (-4, -4) (0.8944, 0.4472)

Simple (-4, 4) (1.0, 0.0)

multiple (4, -4) (0.0, 1.0)

(2nd order) (0.0, 1.0)

Table 3.2: Locations of four critical points and their corresponding a,/3 values; Order

of critical point: the order of the lowest non-zero terms in the Taylor expansion of a

critical point.

This field has four critical points (Figure 3.8). Three of them are simple ones;

however, the 4th one is a 2nd order point which means that there are two identical

pairs of c_,/3 values corresponding to this point. Therefore, there are five points in (_-/3

space associated with these four points. The critical points and their corresponding

a, /3 values are listed in Table 3.2. The supplier side has three points in the a -/3

space while the consumer side has five. Now let

gl = (2z + (1 +i)2+ 1)((1 + i)z + 2+ i)(z + 2i2). 1. lel (3.47)

..and the .vector_ field, remains_unchanged._. However, now we. have two more regular

points corresponding to 1 with (_ -- 0 and/3 -- 0, and both the supplier and the con-

sumer have 5 points in their feature distributions. All the conditions are satisfied, and

we are ready to compute the EMD for these two fields and find out the dissimilarity

between them.
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3.5 Display of EMDs for a Large Set of Vector

Fields

The above discussions are for comparison of a pair of vector fields. If there exist

a large set of vector fields and we want to compare their topologies, it is necessary

to display them in a more meaningful way than a 1D list sorted by their EMDs.

Yossi Rubner et al. has used Multidimensional Scaling Method (MDS) [64, 65] to

display a set of images on a 2D map. Given n objects in a high dimension, the MDS

method computes a configuration of them in a lower dimension space such that the

distance between every pair of objects in this low dimension space matches best to

their real distance in the high dimension. Inspired by their work, we compute the

EMDs between every pair of vector fields and position the vector fields on a 2D map

such that the distances between the vector fields match their EMD values as close as

possible.

3.6 Applications

Using a 2D map for displaying a set of vector fields can assist navigation in the space

of vector fields. Computing the EMDs between pairs of selected vector fields and

positioning them in a 2D map give us a better way to display the query results.

A simple example is shown in Figure 3.9. A list of simple critical points belonging

to eight basic patterns are sorted by MDS to show the relationship (distances) between

them. The_result_ in_F.igure .3.9. shows .that.all .the_ critical points -fall -into the right

section in a-_ space and are well matched to Figure 3.4. The sign of _ controls

whether the flow is circular or asymptotic. For fl > 0, the vector field is asymptotic

and the pattern is either a node or a saddle. For _ = 0, it forms a star pattern. And

for 3 < 0, it is circular and the pattern is a focus or a center. The sign of a controls
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3.6.1 Unsteady Flow Past a 2D Cylinder

The feature comparison methods can also be used for comparing the topology between

vector fields in different time steps. For example, Figure 3.13 shows an incompressible

viscous flow past a 2D circular cylinder 3. When the Reynolds number is higher

than 40, the flow is unstable. Vortex shedding occurs behind the cylinder in the

flow downstream. The alternatively shed vortex pattern is called a Karman vortex

street [74]. Figure 3.12 shows the computations of EMDs between vector fields in

different time steps with time step three. The topological patterns of the flow vary

in a cyclic pattern due to the vortex shedding from the cylinder. The EMD for time

step 3 and 18 is zero which means that the topology of the flow at these two time

steps are indentical. This is shown in Figure 3.14. The only difference between these

two fields is that the flow at time 18 is flipped upside down comparing to that of time

3. In Figure 3.12, the largest difference in one cycle is between time 18 and time 24

(or time 3 and time 8) where time 18 only has one center and time 24 has two centers

and one saddle. This is shown in Figure 3.15.

3.7 Chapter Summary

Visualizing vector field topology is a very important subject in vector field visualiza-

tion and has received much attention. However, to our knowledge, almost no work has

been done on quantitative measurements for vector field comparisons. In this chap-

ter, comparisons are based on feature distributions of vector fields. Critical points

are key features of vector Jfields. Simple.critical points are. characterized by the eigen-

values of their Jacobian matrix. A new set of parameters a and _3 are introduced to

replace the eigenvalues as criteria for critical point classification. The basic patterns

of simple critical points can be classified into eight categories. A complex field can be

3details about the computation of this flow see Reference [73]
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Figure 3.12: The E__IDs for flows in different time steps with time step 3. The E.'k_D

for time step 3 and 18 is zero. which means that flow at these two time steps have

the same topolo_-.



Chapter 4

Topology of 3D Tensor Fields

Tensor field visualization is a very important area in multivariate multidimensional

visualization. Due to their complex nature, tensor data sets usually contain huge

volumes of information. Although they are seemingly random and chaotic, topology

study shows that they are nicely structured and intrinsically correlated. Extracting

the topological skeleton of a tensor field reveals its intrinsic geometric structure and

captures the nature of the field. The topology of 2D tensor fields has been studied by

Thierry Delmarcelle [38], this chapter intends to explore further into 3D space. The

present research to our knowledge is original.

Degenerate points are the basic constituents of tensor field topology (Chapter 2).

A thorough study of the behavior of a tensor field in a close neighborhood of its

degenerate points can lead to a simple topological skeleton that connects these points.

Because the integral lines of eigenvectors (or hyperstreamlines) in a tensor field never

.cross.each..other,..except at degenerate_points,.one can reconstruct the whole tensor

field based only on a small fraction of the data set. In this manner, we are able to

compress the data substantially with no information loss, but it should be noted that

this compression is different from the usual approach used in computer science. Also,

by displaying only the topological skeleton, we can avoid the visual clutter yet still

103
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reveal the essential features of the field.

Studies on first-order (vector) and second-order tensor fields show that their

topologies have striking similarities. One wonders why a point with the same eigen-

values in a tensor field behaves in a similar fashion to a singular point (a point where

the magnitude vanishes) in a vector field. It will be explained in this Chapter.

Every tensor field can be decomposed into a deviator and a spherical part (def-

initions to follow). The spherical part is an isotropic tensor and therefore remains

invariant to a coordinate system transformation. As a result, there is no particular

need to study this part of the tensor (here we refer to it as "the isotropic tensor"). It

will be shown that the deviator of a tensor is parallel to the tensor itself. Therefore,

their respective eigenvector fields are identical. Furthermore, the locations of the re-

spective degenerate points are also identical. This, in turn, means that the topology

of a tensor field is identical to the topology of its deviator.

In order to study the topology of degenerate points, it is critical to locate these

points first. In this chapter, a method for locating isolated triple degenerate points

will be presented. Cases of degenerate points of double degeneracy are more com-

plicated, they may appear along lines or surfaces. In this chapter, the concept of a

"control function" of a deviator is proposed. This function determines the existence

of degenerate points and assists in defining the lines and surfaces along which the

degenerate points lie. Following the study of the tensor field in the neighborhood of

degenerate points, one can display a full representation of the 3-D tensor field.

4.1 Decomposition of a tensor field

A tensor field in the real physical world is often very complex, therefore reducing it

into a simpler form becomes very appealing. In this section, the tensor is decomposed

into a "deviator" and an "isotropic tensor" at each point in the tensor field.
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Definition 15 (Deviator)

0.

A tensor is a deviator D iffit is trace free, i.e., Trace (1)) =

Definition 16 (Isotropic Tensor)

a stretch factor.

A tensor is isotropic iff Uij = uSij, where u is

Any given tensor T, can be decomposed into1:

where

and

Therefore,

Tll (z, y,z) T12(z, _,z)
T21(x,y,z) T22(z,_,z)

T31(x,_,z) T32(x,y,z)

011 (x, y, z) Dn (x, y, z)
= D21 (x, y, z) D22 (x, y, z)

D31 (x, y, z) 032 (x, y, z)

Ull (z,y,z) 0
+ 0 U_ (x, y, z)

0 0

7"13(z, y, z)

T_3(z, y, z)

T_ (z,y,z)

D13 (x, y, z )

JD23 (x, y, z)

D33 (x, y, z)

o)0

u33(z, y,z)

D,, = Ti, - 5 Tj.7
j=l

1 _Tjj.U.= g
j=l

(4.1)

.... Dn .+-D22 + D33 = 0

and

U_1= U22= U33

1the analysis and examples in the rest of the chapter are all for 3-D space, but the theory holds
for 2-D space as well
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TA T{2)
x e / k_ T2'I

Z'2

Xl

Figure 4.1: Eigenvector e3 is aligned to x3, a local 2D tensor on the plane.

at any point in the field. Here the deviator and the isotropic tensor are denoted by

D and by U.

A tensor can also have a "local 2-D deviator". Any given tensor can be transformed

into a space so that at least one eigenvector, for example el, is along one of the axes.

In the plane perpendicular to el, the tensor is locally 2-D (Figure 4.1). It takes the

form:

T_I T;2 0 ]
T;2 T_2 0

0 0 A3

The locally 2-D tensor can be decomposed into a deviator

D r __

and an isotropic tensor
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the eigenvalues at these points are equal to zero. This means that these points are

stress free; a fact that can be verified by an examination of the stress equations. We

have therefore acquired physical insight into the stress tensor field just by examining

a basic topological feature, a point of triple degeneracy. Also, after searching through

the whole field, we found that there are a continuous line of double degenerate points

inside the solid. The stress tensor has a singular "local deviator" along this line.

Figure 4.2 shows the minor eigenvector field (most compressive force). The ar-

rows represent the two forces, the two balls indicate the location of singular points.

The hyperstreamlines on the top surface are the separatrices of the singular points

which describe the topological structure in their vicinity. Inside the solid, the hyper-

streamlines form trisectors of double degenerate points which indicate the pattern of

topological structure in the vicinity of their singular local 2-D deviators. Colors of

the hyperstreamlines encode the magnitudes of minor eigenvalues. We also varied the

strength of the two forces. It turns out that the stress free points move along a circle

as the force ratio is varied. Video clip 1 shows the motion of a double degenerate

point inside the solid with variation of the two forces; Video clip 2 shows the motion

of two triple degenerate points on the top surface(Figure 4.2) with variation of two

forces; Red balls indicates the degenerate points.

4.2 Physical meaning of a deviator and an isotropic

tensor

4.2.1 Isotropic Tensor

Based on section 4.1, one can see that the tensor U is an identity tensor multiplied

by Uii. Therefore, at any given location in the field, it behaves the same in every

direction, in other words, it is an isotropic tensor. Since it is isotropic throughout the



-- 110

whole field, it is of no particular physical interests to the following study.

4.2.2 Deviator

The deviator, in contrast to the isotropic tensor, has a different behavior in all 3

principal directions except at a singular point where all of its components are zero.

It is indeed the deviator that represents the deviations from the originally isotropic

field and makes the entire tensor field so complex and diverse. It is then reasonable

to think of a real tensor field as a deviator superimposed onto an isotropic tensor.

By subtracting the contribution of the isotropic tensor from the tensor field, the

deviator becomes dominant and it enables us to clearly show the topology and the

fluctuations of the field without the disturbance of the sometimes dominant isotropic

contribution. One can think of this as a way to reduce the effect of the constant

background, while making the variations from constancy more pronounced. The

major focus is then on the deviator, as all the following sections are dedicated to

the analysis of the topology of the deviator.

4.2.3 Stress Tensor vs. Viscous Stress Tensor--An Example

This section shows an example of different effects of an isotropic tensor and a deviator

in a flow field. The flow is incident on the front of the hemisphere cylinder and

proceeds to the back of the body at a skewed angle. The viscous stress tensor in the

field is expressed as:

• Ov_ Ovj.

where i,j = 1, 2,3. And the stress tensor is:

!

ff ij : -P_ij q- °ij

where P is the pressure. The only difference between these two tensors is that the

stress field has a uniform pressure component. Pressure in a stress tensor comes
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from outside forces acting on the medium and it can be disturbingly large. In Fig-

ure 4.3, hyperstreamlines (Chapter 1) are integrated along major eigenvectors, and

the medium and minor eigenvectors residing in the cross sections. The size of the

tube is determined by the values of the medium and minor eigenvalues. Because the

pressure component in this field is rather large, some small variations from the vis-

cous part won't make an impact on the appearances of the tubes and they all appear

circular. This makes it difficult to see the actual effect from the flow itself. However,

in Figure 4.4, the isotropic contribution is subtracted from the tensor. Therefore,

pressure no longer has any effect and the resultant tensor is a deviator. The hyper-

streamlines are now all anisotropic, which means that the viscous stresses are very

different in the directions of the medium and minor eigenvectors. From the compar-

ison of these two figures, we can see that a deviator truly reflects the nature of a

tensor field.

4.3 Degenerate Points in a Deviator

Because the trace of a deviator is zero, degenerate points in a deviator take on some

special features.

Definition 17 (Singular Point) A singular point in a tensor field is a point where

all eigenvalues of a tensor vanish, in mathematical representation, it is a zero matrix.

For a deviator (of a symmetric tensor),

I Dll(Xo) D12(Xo) Dls(Xo) /
D12(Xo) D_(Xo) D23(Xo)

Dls(Xo) D23(Xo) D33(Xo)



-- 114

a triple degenerate point satisfies the conditions:

Dll - D22

D_ - D33

D_2

D_a

D23

From the first two conditions, we get

= 0

= 0

= 0

= 0

= 0

and also

Dll __ D22 :- D33 ,

therefore,

Dll + D_ + D33 = 0,

So, all the components of a triple degenerate point are zero and this is a singular

point similar to a critical point in a first-order tensor field (vector field) where all the

components vanish. A double degenerate point in a local deviator

D_I D_2 0 )
Dh 0

0 0 A3

also brings

D_I=0 D_2=0 D_2=0

This corresponds to a point where only two components vanish (0, 0, v3) in a vector

field. However, both of them are dependent on the coordinates. These features of

triple and double degenerate points shed some light on the similarities of topological

properties between the first- and second-order tensor fields.

Dll--0 D22=0 D33=0
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4.4 The Existence Conditions of Hyperstreamlines

in Q-R Space

The eigenvalues of a 3-D tensor T determine the existence of its trajectories and can

be obtained by investigating its characteristic equation.

where:

A(_)

- Tll -712

= -T12 A - Tz2

-T13 -T23

= A3+pA_+QA+R

P = Tll -[-T22 -_-T33

-T_3

-T_3

A - T33

(4.3)

(4.4)

Q

711

+
T13

T23

T_
(4.5)

T_I 712 7"13

R= T12 T_ T23

T13 T23 T33

The coefficients P, Q and R are all tensor invariants.

(4.6)

Theorem 5 In P-Q-R space, hyperstreamlines only exist between surfaces $1 and S_,

which are, respectively, given by:

• 2P 3 .+gPQ +.2 (P_ - 3Q) 3/_
+ R = o (4.7)27

and

2P 3 + 9PQ - 2 (P2 - 3Q) 3/2
+ R = 0 (4.8)27
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A(k) A(1)

(a) (b)

A(1)

(c)

v

(d)

v

Figure 4.5: (a) A(A) is a general cubic polynomial with three real distinct roots; (b)

A(A) has one double root and one single root: A1 = As > A3 (c) A(A) has one double

root and one single root: A1 > As = A3; (d) A(A) has one triple root: A1 = As = A3.
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Proof: Since the tensor T is real and symmetric, all eigenvalues must be real. Its

characteristic function A(A) is a cubic polynomial, therefore, it must have three real

solutions (Figure 4.5). When A(A) has double roots, it satisfies the conditions:

A(A)=A 3+PA 2+QA+R=0 (4.9)
- 3A2 + 2PA +Q = 0dA --

Solving equations 4.9 gives two condition equations

E1 = 2P3 + 9PQ + 2 (P_ - 3Q) 3/2
27 + R = 0 (4.10)

and

E2 = 2P3 + 9PQ - 2 (p2 _ 3Q)3/2
27 + R = 0 (4.11)

corresponding to A1 = A2 > A3 and A1 > As = A3, respectively. Therefore,

• when E1 < 0 and E2 > 0, there are three real distinct roots (Figure 4.5 (a)),

• when E1 = 0 and E2 > 0, one double root and one single root exist (Figure 4.5

(b)),

• when E1 > 0 and E_ = 0, one double root and one single root (Figure 4.5 (c))

exist and

• when E1 = E2, one triple root (Figure 4.5 (d)) exist.

From Figure 4.5, obviously if E1 > 0 or E2 < 0 then A(A) will have only one real root

and a pair of complex conjugate roots. Therefore, the conditions for all A's to be real

or hyperstreamlines to possibly exist are that E1 < 0 and/?2 _> 0. In P-Q-R space,

this is equivalent to saying that hyperstreamlines only exist in between surfaces:

E1 = 2P3 + 9PQ + 2 (P_ - 3Q) 3/2
27 + R = 0 (4.12)

and

E2 -- 2P3 + 9PQ - 2 (p2 _ 3Q)3/2
27 + R = 0 (4.13)
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Figure 4.6: Q'-R' plane

This completes the proof. O

On surface Si: A: (xo) = A2 (xo); and on surface $2. A2 (Zo) = A3 (Zo). Triple

degeneracy A: (:_0) = A2 (:_0) -- A3 (xo) occurs at points where S: and $2 meet. i.e.

p3 __ p2

R= _-_7,Q- Y.

Since the tensor and its deviator have the same topology, it is sufficient to examine

only the deviator D. By definition,

D_,_ - D_ - D33 = 0,

and therefore, P = 0. The coefficient Q can also be presented as:

1 _ _ 9D:,23 9Q' = -_(D_: + D22 + D_3 + 9D? 2 + = -D_3) (4.i4)

The characteristic equation now becomes:

x_÷ _Y_+ _ = 0 (4.15)

And the P-Q.I_ space reduces to the Q'.R' plane.

Corollary 4 In Q'- R' space, the hyper_treamlines exist between curves L: and L2,

which are, respectively, given by:

3

T = (4._6)
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and
3

T = - {4.17)

Proof: From theorem 5, the hyperstreamlines only exist between surfaces: $1 and

$2. Now substitute P = 0 into equations 4.10 and 4.11, $1 and $2 reduce to curve

L1 and L_ on the Q' - R' plane(Figure 4.6), given respectively by

and

T = (4.18)

2 -- (4.19)

This completes the proof.

Double degeneracy occurs on the curves L1 and L2 and triple degeneracy occurs

where L1 and L2 meet, i.e. Q' = R' = 0.

4.5 Control functions of the singular points

From section 4.4, the characteristic equation of a deviator takes the form:

Aa+QA+R=O.

The standard form for the roots of this cubic equation is:

i/ R_2 = _, 7+ v/g + _2 v-K,

I R ,/_ + ,3/ R
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Where

and

-1+i 
2

This equation has three distinct real roots when A < 0 and multiple real roots

when A = 0. This study deals with symmetric tensors, and therefore the eigenvalues

are always real. This, in turn, means that for all regular points in the tensor field

A has to be less than 0. The quantity A = 0 only at a degenerate point, where the

characteristic equation gives multiple roots.

• For double roots, (a)_ = _(_)a _ 0, it is a double degenerate point,

• For triple roots, Q = R = 0, it is a triple degenerate point.

The existence conditions derived in section 4.4 can also be obtained from A (x, y, z) =

0, but from a different point of view. Function A (x, y, z) controls the occurrences of

degeneracy of a deviator, thus it is called a "Control Function".

4.6 The nature of a degenerate point

Theorem 6 A tensor is of triple degeneracy iff its deviator is singular.

Proof: If a tensor T is of triple degeneracy, then T and its isotropic tensor U

are identical. Therefore, its deviator D = T - U -- 0, or D is singular; on the other

hand, if-D is singular,, then T =D +U -- T.

This completes the proof.

Theorem 7 A tensor is of double degeneracy iff its deviator is nonsingular and one

of its local 2-D deviators is singular.
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Proof: If a tensor T is of double degeneracy, let its eigenvalues be A1, A2 and A3,

and also )q -- )_2, then it has one distinct eigen direction e_ associated with A3. We

rotate the coordinate system so that one axis is along e_. In the transverse plane, the

tensor T' is locally 2-D and degenerate, therefore, it is identical to its isotropic tensor

U' and its deviator D'(also a local 2-D deviator of T) is singular. However, if the

deviator D of T is singular then from Theorem 6, T has to be of triple degeneracy.

Since T is only of double degeneracy, D must be nonsingular.

On the other hand, if one of its local 2-D deviators D' is singular, then the local

2-D tensor T' = U' and T is degenerate. Since the deviator D is nonsingular, from

Theorem 6, T is not of triple degeneracy. Therefore, T must be of double degeneracy.

This completes the proof.

Singular points are the basic constituents of both vector fields and deviators. A

singular deviator can be related to a vector with three zero components. It is natural

to see the resemblance between them in topology. Since a tensor and it's deviator have

the same set of eigenvectors and their degenerate points occur at the same place, they

share the same topological structure. This is why the topological structure of a first-

order tensor(vector) and a second-order tensor field have such a striking similarity.

In fact, although a second-order field is more complex than a first-order field, because

the eigenvector fields of a second-order tensor field has sign indeterminacy, it usually

has an even simpler structure.

4.7 Representation of singularities in deviators

The existence and location of degenerate points in a tensor field is determined by the

Control Function. Analysis of the Control Function behavior in the neighborhood of

a degenerate point also contains information regarding the distribution of singular
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points in a tensor field especially in the case that singular points appear along a

continuous line or surface.

The control function A (x, y, z) has maxima at a degenerate point x_,

{ A(x_) =0
(4.20)

In the vicinity of this point, the control function can be expressed as:

A (i) 3 oA (4) (x,- x_)
_(_)+ Z ox--7

i----1

1

+_ (,=_ (x, - x,0) O-_i) 2 A (x_) + (4.21)

If a singular point is located on a continuous line or surface of singular points then

the condition: A (_,) = 0 is satisfied along the line or on the surface, respectively.

Substituting Equation 4.20 into Equation 4.21, results in the following:

a (_) = 2_ (x, - x,o)_ a (4)
_----1

1 _ (x_- z_o) A (z_)+-.-

= 0 (4.22)

In Equation 4.22, the control function A (a_) is expanded to the nth order so that

at least one of its nth partial derivatives at x_ is nonzero [76] [77]. Rearranging the

function according to the order of variable (x - x0)(here Z - x_ is written as x - x0,

Y - Y0 and z - Zo), results in an implicit equation in 3-D space:

__ A,o,o(x- xo)_ + A-_,_,o(x- zoF-_(y - yo)+

fn-_,o,_(x- _o)n-_(z- zo) +...+

fo,n,o(Y- Yo) n + fo,o,n(z- Zo) n (4.23)
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Depending on the values of the coefficients fi,j,k's, this equation is a representation

of an object in 3-D space; surfaces, lines and isolated points are all possibilities [76].

The following is an example of an analytical tensor:

/ 1 )x+y 2 x-y 0

T= x-y -(x+y)+3 0 (4.24)

0 0 z

By computing the trace and decomposing the tensor into its deviator and the

( 5z /
x+y 6 3 x-y 0

7 z
D = x - y -(x + y) + g - _ 0 (4.25)

1
0 0 -g+-_

isotropic tensor:

and

1(z+1) o 0 )
U = 0 ½ (z + 1) 0 (4.26)

!(z+l)0 0 3

One can find the coefficients Q and R(Equation 4.6 and Equation 4.14) of the

characteristic equation,

1

(D_+D_+D_+2D_+2D_+2D_)Q= -3

= -4 - -4 - 2(z-2)2(_-_)_ (_ _)__ (4.27)

R

Dll D12 D13

= DI_ D_ -/923

D13 D23 D33

(z _) (4.28)



-- 124

And then find the degenerate points as follows:

• Triple Degeneracy(triple roots): Q = R -- 0

Result: an isolated point: (x,y,z) - (½, ½, ½).

• Double Degeneracy(double roots): (_)2 _ (_)a 0

Results:

__ 1• aline: x----½, y--

• a surface: (x-½)2+(x-½)2=l(z_½) 2

The line and surface described above actually include both cases of double degen-

eracy:

1 1 for the line; V/( ½)2 + (x ½)2• A1 = A2 > Aa: x : ½, y = _ and z < _ x- - =

2-_( z _ !) for the surface.
2

1 1 \/(• A1 > A2 ---- A3: x---- ½, y---- _ and z > _ for the line; x-½)2+(x-½)_ --

- 2-_(z - ½) for the surface.

Figure 4.7 shows the resulting degeneracy: the small red ball is the location of a

triple degenerate point; the line and the surface in the top figure is for )h -- As > _3

case and the line and the surface in the bottom figure is for A_ > A2 -- A3.

4.8 Topological Structure of a Singular Point in a

3D deviator

4.8.1 The Separating Surface of a Singular Point

For second order tensor fields, in most cases, the eigenvector fields in the vicinity

of a degenerate point can be described in terms of three types of angular sectors:
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in the vicinity of the points of triple degeneracy. They also indicate that a locus of

points of double degeneracy (A2 = A3) connects the points of triple degeneracy. This

is evident from the two trisector points that lie in the symmetry planes just below the

points of triple degeneracy. The existence of the line of double degeneracy is further

verified by noting the two points of double degeneracy in the skeleton of the medium

hyperstreamlines (Figure 4.13).

4.9 Applications

The following section contains examples of application using the methods discussed in

this chapter applied to problems of scientific interest. We use both texture mapping

and hyperstreamlines for display 2.

Deformation Tensor

In the case of incompressible flow the deformation tensor, defined as

Def Ou_ Oui
=ox----;+ ox---=

has a zero isotropic part and therefore is equal to its deviator.

For compressible flow, the deformation tensor is composed of a deviator superim-

posed on a non-zero isotropic tensor which represents the rate of expansion. Therefore,

a deviator describes the topological structure for both incompressible and compress-

ible flows.

For. a t.otational_ flow,.inside.the.vortex core, flow is pure rotational. Assume that

the flow advances in the z-direction and rotates around the z-axis while the velocity

within the vortex core area is

0)

2For dipole techniques, see Chapter 1
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where w is the angular velocity.

becomes singulari outside the vortex core, the velocity is

F

and its deformation tensor Def(r > R) is:

2F _x 2 y27 -}- -xy 0

0 0 0

Here r is the distance from a point to the center of the vortex core and R is the radius

of the vortex core. It is virtually a 2-D tensor with major and minor eigenvalues

having equal magnitude but opposite sign and the medium eigenvalue remains zero.

The deformation tensor is discontinuous at r -- R. The angles of separatrices are

calculated by using the tensor in the neighborhood of the vortex core Def(r > R) [38],

and it turns out that there is no real solution for the angles. This indicates that the

major and minor eigenvector fields are a pair of loci in the transverse plane while the

medium eigenvector follows the direction of the vortex core. Studies of the alignment

between vorticity and eigenvectors of the strain-rate (deformation) tensor in numerical

solutions of Navier-Stokes turbulence have shown that the two principal strains with

the largest absolute values (major and minor eigenvectors) lie in the equatorial plane,

and the vorticity is automatically aligned to the intermediate eigenvector. 3

Figure 4.14 (top) and Figure 4.14 (bottom) show the texture of a flow past a

wingtip for a major eigenvector field and a minor eigenvector field, respectively. These

two eigenvectors, remain .in..the..transverse. plane_perpendicular to the vortex core.

Images are taken from a slice of the transverse plane along the vortex core, and the

two eigenvector fields form two loci as we might expect. Color encodes the magnitude

of their associated eigenvalues.

3for detailed information, please see [27] [26].

By definition, the deformation tensor Def(r < R)
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suggested that the model can be improved by taking into account the variation in

swirling speed.

4.10 Chapter Summary

Tensor analysis is a very challenging task due to its complexity. Simplification is a

natual choice. This chapter introduces a decomposition procedure to break a tensor

field into a deviator and an isotropic tensor. A deviator carries the essential informa-

tion about the tensor field, and describes the same topological structure. An isotropic

tensor provides extra information like pressure in a stress field or expansion of a com-

pressible flow in a deformation tensor, it is uniform at every location in the field yet

can be dominant compared to the deviator. In order to understand the nature of a

tensor field, we primarily study its deviator.

Tensor invariants are very important quantities in tensor analysis. The character-

istic equation of a general tensor has three invariants P, Q and R while a deviator

only has two Q_ and R'. These invariants determine that hyperstreamlines only ex-

ist in between two surfaces in P - Q - R space and two curves in Q' - R' space,

respectively.

The degeneracy of a deviator is also its singularity, which explains the similarity

between vector and second-order tensor fields. Because of the extreme importance of

degenerate points to tensor analysis, the conditions for the existence of degenerate

points are presented here. A control function is derived from these conditions which

enables us to predict_the shape of this point set in a 3_D tensor field. The study of

a control function sheds light on the representation of singularities in a deviator as

well as in the tensor field itself.

The singularities in a tensor field often have a very important physical meaning.

For a deformation tensor, singularities only occur either at a vortex core or in a
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constant flow; for a stress tensor in solids, it is a stress free point. After being

decomposedinto a deviator and an isotropic tensor,a stresstensor in a viscousflow

with high pressurereveals the anisotropy of the flow. We applied our methods to

severalphysical problemsand the resultsare very encouraging.



Chapter 5

Conclusions and Future Research

Vector and tensor fields are multidimensional multivariate data sets and are very

difficult to comprehend. The objective of visualization is to simplify the analysis yet

still capture the key tensor properties. This dissertation discusses the advantages and

methods for visualizing and analyzing vector and tensor fields using topology.

Because of its close connections with differential equations, combinatorial topol-

ogy is the desired tool for studying vector and tensor fields. It deals with geometry,

thus is able to find the intrinsic properties--critical and degenerate points and their

corresponding separatrices that define the frame work of the fields (topological skele-

tons). In this dissertation, research efforts on visualization developments for vector

and tensor fields are based on topology analysis.

5.1 Contributions

5.1.1 Feature Comparisons for Vector Fields

Much research has been done on vector field visualization. However, virtually none is

on quantitative comparisons. In this dissertation, we define "energy" as a quantity to

143
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describe the feature distribution of a vector field. Two parameters a and _ determine

the local topology of a critical point. In the new _-_ space, all the basic patterns of

simple critical points are distributed on a unit circle. Feature distribution is therefore

defined as a set of critical points together with their _ and _3 parameters.

In Clifford algebra, vector fields are represented as a multiplication of linear fields,

each of which is characterized by their (_ and _3 parameters. Therefore, a complex

Clifford vector field is equivalent to a set of linear vector fields. This representation

greatly simplifies the analysis.

The concept "work" describes the energy difference between vector fields or the

amount of work required when transforming vector fields. The Earth Mover's Distance

(EMD) is a linear optimization problem, it computes the minimal amount of work

needed to transform one distribution into the other by moving "distribution mass".

EMD here is used to compute the least amount of work necessary to convert one vector

field into another. It is a quantitatively measure of similarities and dissimilarities

between vector fields.

Multidimensional Scaling (MDS) computes a configuration of points in a low-

dimension Euclidean distance to match the distance in the higher dimension as close

by as possible. A vector field with a set of pairs of _ and _3 values corresponds to

a set of points in _-_ space. MDS in this dissertation is used to sort through a

list of vector fields and produce a two-dimensional map that shows the relationship

(distance) between pairs of vector fields.

Feature comparisons using EMD is very useful when navigating through a large

data base.lo.oking for vector-fields.with.similar, topology or comparing results from

experiments and computer simulations. It is ideal for data compression of a large flow

field, since only the number and types of critical points along with their corresponding

a and j3 parameters are necessary to reconstruct the whole field. It can also be used

to better quantify the changes in time varying data sets.
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5.1.2 Decomposition of a Tensor Field

A second-order tensor usually has nine independent variables, even a symmetrical one

has six. Therefore, a set of data from a three-dimensional second-order tensor field

contains an enormous amount of information. Simplification of data before analysis

becomes necessary.

In this dissertation, a decomposition of tensors into a deviator and an isotropic

tensor is introduced and serves as a preprocessor. The eigen system of a deviator

is parallel to that of its associated tensor. It carries the essential information of a

tensor field. An isotropic tensor serves as a uniform bias. Tensor invariants of a

deviator describe the existence conditions of hyperstreamlines. Degenerate points are

basic constituents of a tensor field. A degenerate point is also a singular point in a

deviator. A control function is obtained from the characteristic equation of a deviator

and it determines the occurrences of singular points in a deviator. The representations

of singular points, both double and triple, can be derived from the control function.

These singularities can further be linked to important physical properties of the

underlying physical phenomena. For example, we show that for a deformation tensor

in a stationary flow, the singularities of its deviator actually represent the area of the

vortex core in the field; for a stress tensor in solids, the singularities represent the

area with no stress; for a Newtonian flow, compressible flow and incompressible flow

as well as stress and deformation tensors share similar topological features due to the

similarity of their deviators; for a viscous flow, removing the large, isotropic pressure

contribution enhances dramatically the anisotropy due to viscosity.

5.1.3 Topological Structure of 3D Tensor Fields

Topological representations of tensor fields reveal the geometric pictures that repre-

sent tensor data locally as well as globally in a very simple manner. This dissertation
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studies the topological structure of 3D tensor fields, an issue which hasn't been dealt

with before. The classification of degenerate points in 3D tensor fields is extended

from that of 2D. Locally, separating surfaces divide the field around 3D degenerate

points into several building blocks which are the fundamental elements in tensor fields.

The separating surfaces have a general structure as they could appear at various an-

gles as compared to 2D tensors which are confined on a plane. Each of the surfaces

are characterized by patterns similar to those of hyperbolic or parabolic sectors and is

bounded by hyperstreamlines that are emanating from or terminated at the degener-

ate point. Consequently, a point of triple degeneracy can be classified by the number

and type of separating surfaces surrounding it. The trajectories on the surfaces are

locally 2-D, while off the surfaces they are fully 3-D. The set of degenerate points and

their connecting separatrices form the topological skeletons that depict the geometric

structure of the field without visual clutter.

5.1.4 Representations of Degenerate Points

Previous research efforts on tensor field topology only focused on isolated degenerate

points. However, in 3D tensor fields, points of double degeneracy often appear as

continuous lines and surfaces. This dissertation designs a method that derives the

fully 3D representation from a control function of a deviator which works for general

cases including both triple and double degeneracy.

5.2 Analysis Framework

Figure 5.1 and Figure 5.2 are two flow charts that summarize analysis processes of

the vector field comparisons and 3D tensor field topology, respectively.

Given n vector fields in a data base for comparison, Figure 5.1 starts with two

input vector fields vl and v2 and the clifford analysis procedure computes the feature
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Figure 5.1: A frame work for feature comparisons of vector fields.
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Figure 5.2: A frame work for tensor field analysis.
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distributions of these two vector fields, respectively. After obtaining feature distri-

butions fl and f2, the next step is to compare whether these two distributions have

the same number of critical points. If N1 > N2, N1 - N2 regular points 1 with

-- 0 and fi -- 0 are added to f2; if N1 < N2, N2 - N1 regular point 1 with c_ = 0

and fi = 0 are added to fl. EMD is computed when the number of critical points in

fl and f2 are even. Similarly, the EMDs between all the pairs of n vector fields are

computed. Then, MDS is performed and the n vector fields are displayed on a 2D

map.

Figure 5.2 describes the procedure for tensor field analysis. First, a tensor field is

given as an input for the analysis. The decomposition step is a preprosessor to remove

the uniform bias and obtain the deviator that describes the essential information of

the input tensor. Eigen system is computed and degenerate points are located in step

3. Then, the degenerate points are analyzed and their local topological structure are

extracted. The integration step generates hyperstreamlines that connect the set of

degenerate points and thus forms a global topological skeleton. In the end, a simple

and compact representation of this input tensor is displayed.

5.3 Future Research

Vector and tensor fields are very rich in information. Current research covers only a

fraction of them. There are still a lot of interesting issues for further exploration.

• Feature comparison for 3D vector fields

Currently, the method for feature comparisons only deals with 2D vector fields.

A 3D critical point behaves similarly as a 2D critical point on the planes spanned

by the pairs of eigenvectors of its Jacobian matrix. Therefore, it is possible to

apply the feature comparison method to the 3D vector fields in a similar manner.
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• Extension of feature comparisons for tensor fields

A tensor field is equivalent to its eigen system. Eigenvector fields are essentially

bi-directional vector fields, therefore, it is feasible to extend feature comparison

methods to tensor fields.

• Addition of other characteristics of vector fields as criteria for feature

comparisons

Feature distributions used for comparison are not restricted to only topological

characteristics. Other properties of vector fields can be used as criteria as well

depending on the applications. For example, the locations of critical points in

a flow are sometimes also important and are required to be part of the feature

distribution. How to put totally different features together as one feature distri-

bution set and assign different weights to them in order to rank the importance

of these features is a particularly chanllenging problem.

• Numerical solutions for locating double degeneracy

Representations of double degeneracy derived from control functions are still

analytical solutions. Efficient computational methods to locate continuous lines

and surfaces of double degeneracy will become necessary when dealing with real

physical problems, both simulated and experimental.

• Further classification for triple degenerate points

Patterns of 3D degenerate points presented here probably do not exhaust all

the possibilities, and further classification maybe necessary for the prediction

of 3D topological structures.

• Application of tensor field analysis to real physical problems Degener-

ate points have very important physical meanings. For example, in the Boussi-

nesq problem, the triple degenerate points are stress free points and in rotational
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flow, the vortex core area is also an area of triple degenerate points of the defor-

mation tensor. It will be very interesting and useful to apply these important

properties to the actual physical systems for sovling problems such as vortex

core detection.



Appendix A

Related Publications

The work presented in this dissertation has appeared or will appear in several publi-

cations; this appendix contains a brief overview of the relevant articles.

• Yingmei Lavin, Rajesh Batra and Lambertus Hesselink, "Feature comparisons

of vector fields using Earth Mover's Distance", Will appear in Proc. IEEE Vi-

sualization '98

• Yingmei Lavin, Rajesh Batra and Lambertus Hesselink, "Vector Field Com-

parisons using Earth Mover's Distance", Will appear in Proc. SIGGRAPH'98,

Sketches

• Yingmei Lavin, Yuval Levy and Lambertus Hesselink, "Singularities in Nonuni-

form Tensor Fields," in Proc. IEEE Visualization '97, pp. 59-66, CS Press, Los

Alamitos, CA., October 1997.

• Lambertus Hesselink, Yuval Levy and Yingmei Lavin, "The Topology of Sym-

metric, Second-Order 3-D Tensor Fields," IEEE Computer Graphics and Ap-

plications, March 1997. Special issue on scientific visualization.
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• Yingmei Lavin, Yuval Levy and Lambertus Hesselink, "The Topology of Sym-

metric Tensor Fields," in Proc. IEEE Visualization '96, Late Breaking Hot Top-

ics, pp. 43-46, CS Press, Los Alamitos, CA., 1996.

• Yingmei Lavin, Yuval Levy and Lambertus Hesselink, "The Topology of Three-

Dimensional Symmetric Tensor Fields," in 13th AIAA Computational Fluid

Dynamics Conference, 1997.
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1 Introduction

PrimView provides a graphical user interface (GUI) and a set of development

libraries to be used for scientific visualization. Reminiscent to development

packages such as Open Inventor (and the corresponding visualizer ivview),
PrimView provides a package for the scientific visualization community. Cur-

rently, PrimView is available only on the Silicon Graphics Workstation nmning
IRIX6.2 and above. The libraries are written in C++ and use Open GL, and
ViewKit.

This document contains information required to create new and existing
primitives from a developer's stand point. The data created from these libraries

can then be outputted to a file and viewed using a GUI package (see PrimView

User's Guide). A knowledge of C++ is required when working with these li-
braries.

2 Primitive Class

The Primitive class is the parent from which all primitives are created. It stores

information that is useful to its children. Table 1 lists the data accessible to its
children.

ID

Color

translate

rotation

dirty flag
Name

Unique identification for Primitive type

Byte array storing R,G,B color values range (0-255)
x,y,z offset from primitive's origin. Initially identity.

Angle, and vector. Initially angle = 0.

Change of attribute --_ reconstruct primitive.
String specifying label of particular primitive.

Table 1: Primitive Class Storage

In addition there are several methods that a developer of new Primitive

children should override. These will be discussed in detail in Section 6. First, we

shall discuss how to incorporate the current primitives supplied in the primitive
library into your application.

3 Using the Primitive Library

Supplied with this manual is a SGI compiled library libPrimitives.so that you

will link with your applications. Also included axe several example programs

using each of the various primitives. It is best to use these examples in con-

junction with the header files included with the primitive library as learning
sources.

There are 3 basics steps to using any Primitive. These steps are shown in
Figure 1.
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Figure 1: Steps for using the primitive class

The first step is to instantiate the primitive. Almost all primitive construc-

tors contain optional parameters which can be filled either during creation or
at a later time. A common constructor parameter is color. If no parameters are

specified, default values are selected for the various constructors. In the case

of colors, we attempt to select different colors for each primitive. In Section 5,

default primitive colors are listed. The second step is to actually store useful in-

formation for the primitive to display. Many basic primitives just require simple

information such as a position or radius. Others, such as surfaces may require

several hundred triangle positions (and normals). The third step is to output

the primitive to disk. All primitives support the insertion operator, <<. And can

be outputted to a single file. Primitives will be concatenated automatically. In

fact, two individual primitive files can be appended together with no problems.
Every primitive is autonomous and contains information to reconstruct itself.

Once the primitives are saved to disk, the data can be viewed in PrimView.

4 Example

To demonstrate the three basics steps to creating a primitive, we provide a

simple example of creating some text to be displayed in PrimView. Granted,

one could create the text directly in PrimView; however, using the library has
the advantage of creating multiple lines of text all within the same primitive.
This provides for more efficient viewing than if each line of text were to be
created as a separate primitive.

The first line Text t instantiates the primitive, t.add() then proceeds to
step two, and stuffs the data. Finally, f±le << t writes the data to a file. The



#include <fstream.h>

#include "Primitives/Text.h"

main(void)

{

Text t;

t.purge(); //Wipe out any default text.

t. add( "Creating Text", O. I,. 7) ;

t.add("is real" ,0.4, .50);

t. add ("Easy !", 0.6, .30) ;

ofstream file ("text. pv", los: :out) ;

file << t;

file. close() ;

}

Figure 2: Example creating a Text primitive

Creatin9 Text

is real

Easy!

Figure 3: Output from Text primitive code (see Figure 2)



output of Figure 2, which can be viewed directly from PrimView is shown in

Figure 3. Other examples are provided with the library, and follow the basic
three steps.

5 Primitives provided

Currently, there are 12 basic primitives provided within this library release.

Below is a description of each primitive and useful notes to keep in mind as you

use them. For detailed use of the primitive see the respective header (.h) file.

Primitive: Base class which all other primitives must inherit from. Discussed
in detail in Section 6.

Axes: Cartesian coordinate system with x,y,z labels. Default color is white

(R=G=B=255). The coordinate system can be moved around via the

origin() attribute, and the coordinate system can be scaled using the

size() attribute. Both attributes can be called without parameters for
querying.

Arrow: Creates an arrow with full control over its characteristics. Characteris-

tics include head (head is where the arrow head is located) and tail location
(head, tail). The size of the head radius which is the largest part of the

head (it tapers to a point) can be controlled via headRadius (). The tail

radius, which is the radius of the barrel is controlled using tailRadius ().
The location of where the head of the arrow starts relative to the en-

tire arrow is specified with (headPercentage() using a value between 0.0

to 1.0 corresponding to a percentage. The arrow's default color is green
(0,255,0).

Cube: A Cube is composed of 8 points. They are specified individually us-
ing the adclElem() method. See header file for description of order in

which cube is connected. The default color for the cube is red (255,0,0).
The line thickness (glLineWidth in Open GL) default is 5.0. The point

size (glPointSize) is 2.0. These can be changed via setLineSize(),

setPointSize (). The point color is set using the standard method setColor ().
The line color is set using a new method seZLineColor ().

Grid: The Grid class is a wrapper for a plot3D structured grid. Providing the
grid class with a Plot3Dio class (p3dio()) will cause the Grid to import

in a structured grid. The color by default is olive green (0,127,0), and will
be drawn as a mesh with k---0 shell selected (i and j is drawn to the full
span). The step size for each ij,k slice is 1. The line thickness is default to

1.0. The grid can be rendered solid using drawStyle (). The line thickness
used to draw the mesh is controlled via lineSize (). There are times when

only a subsection of the grid needs to be drawn or calculated, iMin/iMax,

jMin/jMax, kMin/lOiax are attributes that control the scope of the grid.
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IsoSurf: Designed to work in conjunction with algorithms such as marching

cubes. Triangles are drawn in the order specified using addElem(). The

default color for the surface is gray (95,95,95). In the constructor, a hint

can be given to the IsoSurf object as to how many triangles are expected

to be inputted. Internally, memory is allocated to the hint size. When

memory has been exhausted by specifying more triangles than the hint,

memory is reallocated to double the hint. This continues until all triangles

can fit into memory. Reallocation is an expensive operation, therefore a

proper hint can greatly increase ettidency.

Legend: Given a ColorMap is all that is needed to construct a legend. The

ColorMap controls color space (RGB/HSV), and the minimum and maxi-

mum values to interpolate between. The Legend can be positioned using
the set0rigin() method. The origin corresponds to the bottom left hand

corner of the Legend. The coordinates are specified in 2-D and correspond

to a percentage of the screen (scaled between 0.0 to 1.0). The coordinates
follow a first quadrant system (i.e. origin at bottom left hand portion of

the screen.)

Line: Lines axe composed of a series of points. The points are added in linear

fashion using the addElem() method. The points can be changed later

using the set0rigin() method. (To get total number of points added

to Line use the Length() attribute.) Lines can be drawn as a series of

points and not connected (use aetConnection(). Points can have a differ-

ent color than the line itself and different point sizes (setPointSize()).
The color of the line and its line thickness can be controlled as well

(setLineColor(), setLineSize()). As a convenience function, both the

line and point color can be changed simultaneously (setColor()). Both

point-size and line-size are set to 3.0 by default. Line color is an off blue

(purplish) (165,0,255).

Node: Similar to Line, however, Node can specify only one point. Nodes

can be drawn as a simple Open GL point or can be rendered as a sphere
(representation()). Default point size is set to 3.0. Default sphere

radius is set to a tenth of the point size.

TexSurf: is used to render textured surfaces. The items needed for a texture

are a Texture (setTexture()), a corresponding surface to map texture
to (setSurface()) and a scalar value map to set each textured pixel

(setColorValues (), setColorMap ()). TexSurf should be used in con-

junction with the TextureCalc class which is a texture calculator designed

to create arbitrary surfaces and compute textures (via vector fields) over
these surfaces.

Text: Designed to create text annotations. This class can add an arbitrary

number of text elements at arbitrary locations via the add () method.

Coordinate locations are specified in 2-D and are a percentage of the

screen coordinates (between 0.0 to 1.0). The bottom left hand corner is



theorigin. Text sentences are referenced from the bottom left hand corner
as well.

Tube: The tube class is a general class creating arbitrary tubes in 3-D space.

A tube is created from a series of ellipses each possessing a color. The

tube merely stitches the ellipses together and linearly interpolates the

color between ellipses. Ellipses are added in sequential fashion using the
addElem() method. The resolution of the ellipses can be controlled af-

ter the ellipses have already been added (setEllipsesResolution()).
Ellipses contain a scalar value which is interpolated and mapped to a

color using ColorMap(). The color map can be changed at any time.
In addition, the ellipses' scalar values can be overridden by setting the
colorSZyle() attribute to UNIFORM. The color specified via setColor()
will be used.

6 Creating Primitives

All new primitives created by the user must inherit from the base Primitive

class. This parent class provides header information (on a primitive by primitive

bases) that makes your primitive recognizable throughout the system.

6.1 Constructor

When creating a new class, a unique primitive ID needs to be registered for the

primitive. In the file PrimitiveID.h is a table of enumerations. New primitives

must be appended to this table. It is recommended that new primitives from a

particular group/agency start at a unique base i.e. enum ePrimitiveID {... TEXT, DOD_SURFACE=200}.
If the primitive is useful and available for others, it can be incorporated into
the base library and distributed as such.

The remaining parameters in the Primitive constructor are as follows:

Primitive (ePrimi'c-iveID=PRIMITIVE, const char *name=NULL,

unsigned char R=95, unsigned char G=95,unsigned char B=95);

The parameters all have non-essential, but highly useful data elements. A

name is useful for identifying the primitive to a user. This name is what is

shown in PrimView (member data ..primName). The color parameters should be

used to specify the color of the primitive (member data _color [3] ).

6.2 I/O and versioning

When users invoke the insertion and extraction operators (>>,<<), calls to
readIn(), wriZe0uZ() are made. By default, the Primitive's readIn() and

write0ut() are invoked. The data written/read by this default are the primi-

tive ID, the version number of this primitive class, the name (in binary), color,
and local rotation and translation vectors. The version number is acquired by



void Primitive: :setColor(unsigned char R,

unsigned char G,

unsigned char B)
{

_color[O] = R;

_color[I] = G;

_color[2] = B;

_dirty = I;

notify() ;

}

Figure 4: Example of using notify and the _dirty flag

invoking the method version(). Hence, developers are encouraged to override

this attribute to return a version for their primitive. In addition, another at-

tribute oldestYersion() should be overridden to support the oldest version

that can be loaded by the class. Ideally, we would like backward compatibility.
Using the oldestVersion() method is used by the default readIn() method

to determine whether the primitive can be loaded into the system. If it can't,
the read process is aborted with istream's fail bit set. If the version information

is valid, the readIn(istream &in, int version) method is invoked. The de-

veloper should then use the version information to load the appropriate values

(and set default values for information not specified in an older version).

6.3 Use of the dirty flag and Notification

The primitive class uses a simple notification system. Other classes using the
primitives can register itself to be notified any time a change is made within

a primitive. Therefore, in order to correctly reflect any changes made within
a primitive (typically screen redraws) it is important to invoke the notify()

method. To clarify this point let's look at the setColor() method shown in

Figure 4.

Once the color has been stored, the _dirty flag is set to true, and the function

notify() is invoked. The notify() method informs any registered users that a

change has been made to the primitive. A typical registered user is PrimView's

View engine. Once the View is notified that a change has been made to the

primitive, it invokes the primitive's clrawThySelf () method. The _dirty flag is

internally used for efficiency. For example, in the drawThySelf () method, the

typical Open GL construct is to use call lists. This greatly increases efficiency
by invoking the call list instead of recomputing the primitive. However, when a

change has been made to the primitive (color, radius, etc.) it maybe necessary

to recompute the primitive. Using the _dirty flag informs the drawThySelf ()



methodthat recomputationis necessary.Of course, once the computation is
complete, the _dirty flag should be set to false.

6.4 Drawing the primitive in Open GL

Since the drawThySelf() method uses Open GL to draw itself- developers
should keep the template shown in Figure 5 in mind.



void YourClass : :drawThySelf (void)

{

//Enter a local coordinate system

glPushMatrix () ;

//Apply any local coordinate transformation

glRotatef (_rotate [0] ,_rotate [1] ,_rotate [2] ,_rotate [3] ) ;

glTranslatef (_translate [0], _translate [I] ,_translate [2] ) ;

//Check if dirty flag set. If so recompute primitive.

if (_dirty)

{

//Clear the dirty flag

_dirty = O;

//Use Open GL commands to create a call list

//_iDisplay contains the old display list ID.

if (_iDisplay) glDeleteLists(_iDisplay, I) ;

_iDisplay = glGenLists(1) ;

glNewList (_iDisplay, GL_COMPILE_AND_EXECI/I_) ;

{

// YOUR C0DE HERE.

}

glEndList () ;

}
else

{

glCallList(_iDisplay);

}

glPopMatrix();

}

Figure 5: Template for drawThySelf () method
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1 Introduction

Prim View provides a graphical user interface (GUI) and a set of development li-

braries catered for scientific visualization. Reminiscent to development packages

such as Open Inventor (and the corresponding visualizer ivview), Prim View pro-

rides a package for the scientific visualization community. Currently, Prim View
is available only on the Silicon Graphics Workstation and runs on IRIX6.2. The

libraries axe written in C++ and exploit Open GL, and ViewKit.

This document contains information required to run the Graphical User

Interface portion of Prim View. Users wishing to learn how to create data to be

viewed by the GUI should refer to the library guide.

2 Starting PrimView

Prim View can be started with or without a command line argument. Starting

without an argument loads the basic GUI interface with no data. An optional

argument can be given which specifies a Prim View file (typically denoted with
a .pv file extension).

On startup, the camera (which is what the user is looking through) points
down the negative z-axis. The camera is situated a fixed percentage away from

the bounding sphere of the loaded primitive. As additional primitives are added

to the world (or scene) the bounding sphere is recomputed. However, the camera

is not reset ff the world contains at least one primitive. To reset the camera to

contain all elements in the world see the pan function in Section 3. As primitives

are added a bounded box primitive is continually updated to encompass all

primitives in the world. This primitive is normally hidden but can be displayed

(see Section 5 for displaying the bounding box).

3 Prim View Window Components

Figure 1 shows the major areas of the Prim View window. A brief explanation
of each region follows:

View Provides a depiction of the primitives contained within the world.

Left mouse button simulates a trackball and rotates the view about its

own local coordinates.

Middle mouse button pans or translates the world.

Left and Middle button Holding both the left and the middle mouse

button and moving the mouse up causes the world to zoom out.

Sliding the mouse down while holding both buttons causes the world
to zoom in. Note that each region is context sensitive and therefore,
all mouse clicks must be within the view window for these actions to

occur.



Figure l: Prim View window

Right Mouse Button Provides options that manipulate the view. These
menu choices are elaborated in Section 4.

Console Provides transformations on the View region.

X Y Z spindles Rotates world (located in View) about screen X,Y, and
Z axes. See View for local rotations.

Pan buttons Translates world in screen X, and Y coordinates. Pressing
the button labelled Pan causes the camera to reset the view.

Zoom In/Out Zooms the world by manipulating the camera.

Options Controls which primitives are shown in the View, and allows for

editing of individual primitives.

Primitive Namellst is the region that contains the names of all of the

primitives loaded in the world. Names preceded by an asterisk 0

indicate that the primitive is hidden and will not appear in the view.

Filter List Menu filters the list of items depicted in the Primitive

Namelist region by primitive type. Selecting All shows all prim-

itives in the Primitive NameHst region.

Right Mouse button Manipulates the primitives within the world. See
Section 5 for details.



4 View Region Menu Options

Pressing the right mouse button over the View region yields a menu that pro-

vides manipulation of the View and the world (scene). Following is a description

of each menu item found in the View menu with a brief description.

New... purges all primitives from the world, and resets the view as described
in Section 2.

Open... adds primitives found in primitive file to existing world. If the primi-

tives are older versions, Prim View will upgrade them to the most current
version. Camera view remains unchanged as primitives are added..

Import FAST grid... This command will detect and load four types of Struc-

tured grids. Single-Zone, Single-Zone with I-Blank, Multi-zone (struc-

tured), and Multi-zone (structured) with I-Blank. The imported grid is
converted to a Grid primitive which allows additional attributes to be

changed and saved (name, color etc.)

Save Saves all visible primitives in the view region to disk. The filename used

under the saveas.., menu option is used. If no filename has been specified,

the saveas.., option is automatically invoked.

Save As... Saves all visible primitives in the view region. A file requester
prompts for the filename.

Save

Save

RGB... Saves current view region as an SGI RGB picture file. The size

of the RGB file is exactly that of the view region.

View... The camera angle, position, frustum and background color set-

tings are saved to disk. This allows particular camera views to applied to
the view region.

Load View... Loads the camera, frustum and background color settings and
applies it to the view.

Background Color Brings up a color wheel, allowing the background color of

the view region to be changed.

Reset View Has the same affect as pressing the Pan button in the console.

Resets the camera such that the camera is placed along the z-axis and is
pointing in the negative direction.

Options Toggles the visibility of the Option Region (see Figure 1).

Show Console Toggles the visibility of the Console Region (see Figure 1).

Full View Toggles between hiding both the Console and Option Region to the
current Region view.



Perspective When toggled on (yellow box visible) perspective view is on (fore-
shortening of lines), else Orthographic projection is set.

Lighting Lighting produces shading of primitives. Without lighting pixels col-
ors are fully saturated and uniform.

Two Sided Lighting Primitives whose normals are not pointing in the same

direction as the light yield dark regions. Two Sided Lighting defeats this

by lighting both sides equally. In effect as if to put a light 180 degrees to
current light.

5 Option Region Menu Options

All primitives that are in the world (scene) can be controlled via the Option

Menu. Individual primitives can be selected by holding down the control key
and pressing the left mouse button over each primitive name located in the scroll

window. Pressing the right mouse button drops a list of options for manipulating
the selected items.

5.1 Hide, Show, Remove...

Hide hides primitives from the View Region. Primitives are still in memory
and are denoted by an a prefixed asterisk (*) in their names shown in the
Option scroll window.

Show shows all selected hidden primitives in the View Region.

Remove... On confirmation, deletes selected primitives from world (freeing up
memory).

5.2 Edit...

PrimView provides some basic editing capabilities on the primitives loaded

within the world (scene). Elements that have been selected can be edited by
selecting the Edit... menu option. In many cases, selecting multiple primitives

allows the changing of each primitive's attributes collectively. For example, to

change the name of all arrows to 'Force Vectors', one can select the Arrow op-

tion in the filter menu, select all arrows with the Control key, and then select
Edit from the Option Menu. Primitives nat of the same type can not be edited
together.

By in large, the majority of the primitives allow their name and color to be

changed. Exceptions are noted below. In the Edit form, the Okay button accepts
all changed and closes the Edit form. The Apply button merely previews the

changes. To make the changes permanent the Okay button needs to be pressed.

To cancel the changes made by the Apply button, press the Cancel button. This
too causes the Edit form window to close.



Belowisa listofthevariousprimitivesthat canbeeditedandnotesto help
clarifytheedit form.

Arrow : Arrows are used typically to identify locations of interest. The Edit

form allows the arrow's head and tail to be manipulated similar to a vector.

In addition, the Arrow Head Radius can be changed as well as the Tail's

radius. The starting point of the Head can be specified as a percentage
(between 0.0 (no head) to 1.0 (all head) )

Axes The position of the Axis and the size can be controlled via this form.

The size is useful for scaling purposes.

Cube Not implemented in this version.

Grid Allows dynamic control over which grid slice is currently displayed. This

is controlled via the min/max sliders and the corresponding selected grid

slice toggle. For example, to control the 'k' slice of a grid, make sure the

'k' toggle is selected and slide the rain or max slider. On low performance

machines, the min and max can be inputted directly in the form and either

the Apply or Okay button can be pressed for the change to take place.

The Step controls the coarseness of the grid. For example, selecting a step
size of 2 would draw every other point to form the grid. This is useful for

low performance machines. A grid can be displayed either as a mesh or

as a shaded surface. This is controlled by the View As toggles.

Isosurface Currently the name and color are the only properties that can be
modified.

Legend The Legend is considered a separate primitive and is not linked to the

primitive that spawned it. The position and scale size can be controlled.

The X and Y value vary between 0 to 1 and correspond to screen position

of the legend's bottom left corner. (0,0) corresponds to the bottom left

hand corner of the screen and (1,1) is the upper right hand corner.

Line Currently not implemented.

Node Nodes can be represented as points or as spheres. In either case the
position and scale size can be modified.

Texture Color cannot be modified. Depending on the capabilities of the dis-

play machine hardware or software texture mapping can be selected. For

systems supporting hardware texture mapping set the toggle to Texture

Mapping. For systems that do not have hardware texture mapping, tex-

tures are rendered using triangles when the Triangle Rendering toggle is

selected. Note: even on platforms which do not support hardware texture
mapping, OpenGL will internally render the texture in software if the Tex-

ture Mapping toggle is set. Tests have indicated that Triangle Rendering
has better performance than OpenGL's software texture mapping.



Text Thepositionof thetext'sbottomleft handcornercanbecontrolledin
screencoordinates(0,0- bottomleft handcornerofscreen1,1- topright
handcornerofscreen)viatheOrigin.TheContentfieldchangesthetext
displayedin theViewregion.TheNameismerelya tagusedto identify
thetextin theOption'sScrollwindow.

Tube Tubescaneitherbesinglecoloredorbyrepresenting a scalar value at each

ellipse can depict multiple colors. Colors are formulated by interpolating

within either an RGB or HSV colorspace. By default the minimum value

is assigned blue and the maximum value assigned magenta. Colors in both

spaces span the following spectrum: Blue, Cyan, Green, Yellow, Red, and
Magenta. Under the Color Control field a tube's maximum and minimum

value can be set. By changing this range, the corresponding color space

interpolation changes. Colors used in the spectrum can be modified by

selecting the spectrum option located in the color control region. Note that

the spectrum must maintain its order i.e. a tube can span Green (min)

to Yellow (max) but never Yellow (min) to Green (max). Selecting HSV

or RGB selects which color space to interpolate in. RGB typically yields
a much more discrete space best for scientific visualization. HSV tends to

smooth the colors into one another and typically yields a more aesthetic

representation. Selecting Single Color... overrides the tubes scalar data

and displays the tube as a single color. The scalar data is not lost, and

can be recovered by pressing the Unify Tubes... button. Unify Tubes... is
typically used when multiple tubes have been selected. Its function is to set

all of the selected tubes to a single minimum and maximum corresponding
to the selected tubes' overall minimum and maximum values. This is useful

when a uniform color map is needed over a set of tubes. Spawn Legend will
create a legend primitive based on the minimum and maximum value as

well as the color space found within the form. A tube's corresponds to the

number of points used to draw each ellipse. The scale affects the overall

radius of the tube. Note: Anytime the scale is changed, the value reverts

to 1. This indicates that the current scale is now 1 and any additional
change will affect the current tube's scale.

5.3 Create

Certain basic primitives can be created directly within Prim View. These prim-

itives are typically used to provide supplementary information to View Region.
Currently, there axe four primitives that can be created from the Option Menu:

Arrow, Axes, Node, Text. Creation of any of these primitives automatically
nvokes the edit primitive form.
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1 Abstract

A method for comparing three-dimensional vector fields

constructed from simple critical points is described. This

method is a natural extension of the previous work [ 1] which

defined a distance metric for comparing two-dimensional
fields.

The extension to three-dimensions follows the path of

our previous work, rethinking the representation of a critical

point signature and the distance measure between the points.

Since the method relies on topologically based information,

problems such as grid matching and vector alignment which

often complicate other comparison techniques are avoided.

In addition, since only feature information is used to repre-
sent, and therefore stored for each field, a significant amount
of compression occurs.

2 Introduction

Vector fields I are used to study phenomena in almost all

areas of the physical sciences including such diverse subjects

as climate modeling, dynamical systems, electromagnetism,

and fluid mechanics. Hence, the analysis of vector fields has

become a significant concern to the sciences, and a variety of
techniques for visualizing and analyzing vector fields have

been developed. However, an effective technique to quanti-

tatively compare vector fields has not been developed. This
paper addresses the issue.

A review of existing comparison techniques is first dis-

cussed. Even the most promising of these techniques lack

the quantitative capabilities for automated comparisons. The

properties of the two dimensional classification technique
used in [1] are briefly discussed and are used to extend the

classification to three-dimensional critical points. A com-

plete categorization of 3-D simple critical points is presented

and is used to redefine the EMD metric allowing for a quan-

titative comparison between 3-D flow fields. The paper con-
eludes with an example demonstrating the effectiveness of

1Thedefinitionof vectorfieldsis restricted to continuousfields or flows
which arediscussed in section 4.

the technique on a thermal convection model described by
the Lorenz equations.

3 Existing Comparison Techniques

A variety of comparison techniques exist for vector fields.

These techniques basically fall into three general categories:
Image, data, and feature extraction based comparisons. In

most of these cases, comparisons are made visually [2].

Image based comparisons work on the computer gener-
ated image. Often times, a numerical data set is converted

into an image that simulates an experimental visualization

technique (computational flow imaging). This may be eas-

ier than extracting a vector field from an image, such as

Schlieren. However, visualizing a field in 3-D is quite diffi-
cult and often, these techniques are limited to two dimen-

sions. In addition to side-by-side comparison of images,

other techniques include image fusion, and Fourier analy-
sis [3].

Data level comparison techniques operate directly on the

raw data. An accurate comparison requires proper grid
alignment which can involve problematic interpolation be-
tween two fields [4].

The last comparison category is the extraction of features.

Typically features are problem specific; for example in fluid

mechanics features include vortex cores and shock surfaces.

Often there is a geometric representation of the feature and

possibly a semantic representation of the system which can

be compared using a pattern recognition technique [5]. This
may lead to more robust comparisons.

Qualitative comparisons have been based on the concept
of critical points in vector fields. Past study has focused on

the geometric structure of vector fields [6] and last year a
quantitative measure for two dimensional vector fields was

introduced [1]. The work is extended by defining a quan-
titative measure of the similarities and differences of three-
dimensional vector fields.



4 Description of PhasePortraits with 2-D o_-/3
Parameters

Since the method reduces a 3-D flow pattern into 2-D

components, the relevant 2-D categorization for this type of

vector field is reviewed. A 2-D vector field that can be rep-

resented as a system of tWO simultaneous differential equa-
tions has the following form:

dz

vz = d-"t = F(x,y) (1)

dy
v_ = -_ = G(z, y)

where F and G are continuous and have continuous partial

derivatives in some region D. The solutions to this system
forms a family of directed paths. Given some initial vMue

to the system, a parametric representation expressed as x =

¢(t), y = ¢(t) can be deduced. The image formed is the

phase portrait and is typically described by the number, type,

and arrangement of critical points (or equilibrium points).

These are points where F(x, y) = 0 and G(z, y) = O. The
nature of a critical point will not change under continuous

(affine) transformation. Critical points are significant in that

they are the only points in a vector field where tangent curves

may cross each other. Therefore, critical points delineate the
field into sectors of uniform flow.

A critical point is said to be isolated or simple if there is
an open neighborhood around it that contains no other criti-

cal points. The behavior of the flow about a critical point can

be analyzed by investigating the trajectories in the neighbor-

hood of the critical point. If the distance is sufficiently small
(say dx, dy), a first order approximation (Equation 2) of the
field can be used.

OVx dx cOv_d

O% d z Ovy
vy(dx, dy) ,,_ Ox + --_-y dy

Hence, the flow pattern is completely determined by the Ja-

cobian, Jo = av, (i, j = 1,2) evaluated at the critical point.Ov_

The various patterns formed in the phase-plane space can be
seen by analyzing the eigenvalues of the Jacobian. The char-
acteristic equation

A2 +PA+Q=O

where P = -trace(J) and Q = det(J) is used to classify

the various patterns using the well known P - Q stability di-
agram [7]. However, advantageous properties arise by defin-

ing a new space (a',/3 t) as explained in [1], where the eigen-

values map a = P and/_ = sign(P 2 - 4Q)x/lp2 _ 4Q I

_=0
J]>o

a._ \ 1 (z>O

/

OL<O {Z>O

I_<o c_ _<0

_=0

I_<0

Figure 1: Basic patterns for simple critical points.

and are normalized as follows:

+ ffz (4)

(5)
(2) V/_ + _-2

In this space, critical points obey all the the rules defined for

a regular 2-D Euclidean space and the distance between any
two critical points is a metric.

It is shown in [8] that the actual values of a and B do

not determine the porlrait of the critical point; only the ra-

tio between them matters. Hence, this normalization maps
all points onto a unit circle and thereby provides a means of

relatively quantifying the difference between various points
by just an angle. Also note that a uniform vector field with

(3) no critical points, F(x, g) = cl, G(x, y) = c2 has a = 0
and _ = 0 and maps to the origin of the unit circle. This

is the reason why arc length is not used as a metric. For

the remainder of the paper, a and _ values will be assumed

normalized. The patterns are sketched in Figure 1 and enu-

merated in Table 1 2. Notice a positive or negative real part

2The definition of saddle indicated in the table is more relaxed than spec-



a _ Type Constraint
> 0 = 0 Repelling Star

> 0 > 0 Repelling Node
-- > 0 Saddle

< 0 > 0 Attracting Node

< 0 = 0 Attracting Star

< 0 < 0 Attracting Focus
=0 <0 Center

> 0 < 0 Repelling Focus

I_1 < lal

lal < I_1

Table 1: Classification of Critical Points via a-/3 values

(denoted by a) is indicative of repelling/attracting behav-

ior And if an eigenvalue has an imaginary part (fl < 0),
it indicates circulation about the point and the trajectories

can be represented via logarithmic spirals, otherwise asymp-

totic behavior whose trajectories can be described via simple
power laws is exhibited.

5 Classification of Three-Dimensional
Vector Fields Using Phase Portraits

The formulation for a 3-D vector field is very similar to
the 2-D analysis. For a three-dimensional vector field, the

Jacobian is represented by a 3X3 matrix, Jij = _ (i, j =
1, 2, 3) The characteristic equation now becomes

A3 + PA 2 + QA + R = 0 (6)

where P = -trace(J), Q = l(p2 _ trace(j2)) ' and
R = -det(J). Three distinct eigenvalues are possible,
along with three eigenvectors. The flow field can be de-

composed into fundamental solution trajectories along its

eigenvector planes as demonstrated by Reyn [9] and Chong
et al. [10]. All other solutions trajectories converge (or di-

verge) to these eigenvector planes. Therefore a critical point
in 3-D can be defined by a set of three (a,/_) values. Each

(a, B) point corresponds to a solution trajectory formed in
the respective eigenvector plane.

To simplify the classification of the various phase por-
traits about a three-dimensional critical point, the Jacobian

is transformed into canonical form. This does not affect

the eigenvalues since they are invariant to changes in scale,

translation, and rotation. Philippou, and Strickland catego-
rized the Jacobian into seven basic canonical forms [11] or

classes. With each form, several phase-portraits are possi-
ble. In Tables 2 and 3, all possible cases are enumerated in a

similar style as presented in reference [I l] 3 along with the

[fled in the figure.

3The class structure is slightly changedby placing the complex Jordan
form last.

Figure 2: Decomposition of a class 1 critical point along
eigenvector planes.

corresponding a, 3 sets. A brief discussion of the various
classes is given below.

Class 1 (A1, Az, As): Class 1 is indicative of eigenval-

ues which are real and distinct. In this case, there exists

three independent eigenvectors and therefore three indepen-
dent eigenvector planes. For the case of a Hermitian matrix

(and its subclass the real symmetric matrix), the eigenvectors

are mutually orthogonal. If all of the eigenvalues are posi-
five, repelling nodes form in all three planes. If the signs

differ, a saddle occurs in two of the planes, and finally if
all signs are negative attracting nodes occur. All other solu-

tion trajectories approach or diverge from the critical point
as t _ oo and are not planar. In this case, there exists a full
set of c_,/3 values. A degenerate 2-D ease is exhibited when

one of the eigenvalues is zero. Only one plane will contain
a simple solution trajectory, the other two planes will con-

tain lines (since in 2-D every plane in the third dimension

is identical). In this case, there exists only one distinctive

a, 3 value. The remaining two are set to zero. In fact, all

2-D eases degenerate to {{al, 31 }, {0, 0}, {0, 0}} and the
computed comparison values are identical to those in refer-
ence [1]. Figure 2 is an example of trajectories formed for a
node/saddle/saddle combination.

Class 2 ()q, A1, A2): This is a degenerate case where two

eigenvalues are identical. The multiplicity is 2, however, 3

independent eigenvectors can still be found. One plane will
contain a star pattern, the planes normal to this will contain
solution trajectories (nodes or saddles) and will have identi-

cal a, 3 values. The 2-D ease degenerates to the star pattern.
The 1-D (A1 = 0) case is ignored.

Class 3 (A1, A1, Az): In this case, only 2 independent
eigenvectors and only two solution trajectories exist. In one

plane, a log star 4 trajectory is observed and in the other plane

4A log star is also referred to asan i_ node see [12]



a node or saddle. A log star in the a, _7 space is indistin-
guishable from a star pattern, i.e. a = -t-1, L7 = 0 since the

star pattern is just a special case of the family of logarithmic
stars formed.

Class 4 (A1, A1, A1): Case 4 exhibits triple degeneracy

with three independent eigenvectors. Any plane passing

through the critical point will exhibit a star trajectory. The
set of a,/3 values are identical.

Class 5 (A1, A1, A1): Two linearly independent eigenvec-

tors exist for this triple degeneracy case. Here there are only

two independent planar trajectories. One trajectory is a log

star located in the coordinate plane spanning the eigenvector

(in x-y plane for the canonical form) and a star pattern in the
other coordinate plane (x-z).

Class 6 (A1, A1, A1): In this case, the multiplicity is three

but only one independent eigenvector exists. Therefore, only

one plane contains an attracting/repelling log star trajectory.
Hence only one unique a,/3 value exists and this case con-

flicts with the 2-D case of class 2 and 3. Therefore, some

false positives can be expected. Fortunately, class 1 is the

most common occurrence [11], which this method classifies
most uniquely•

Class 7 (a + 8, a - 8, A3): Three eigenvalues are

found, two of which must be complex conjugates of each

other for the J matrix which contains no imaginary values.
Only one plane will contain solution trajectories which are

either a focus or a center. Hence, only one unique a,/3 pair
value exists just as in the 2-D case. The real eigenvalue,

An, denotes a stretching or compressing phenomenon where

trajectories either spiral away or towards the solution plane,
and this will not be captured [13].

associated with the vector field's critical points:

), (4", o)tO_3 ,03 )_,

Ha(n) _(n)_ (_(n)
"'" ,tt 1 ,,O1 )'tt'12 ,8_n)), /'_(n) f:/(n)l// (7)

t_3 '_3 )'//

Definition 2 (Energy) The energy for a vector field is:

j=l i=1

where n is the total number of critical points in this fieM.

The energy is a quantity that characterizes the critical points
of a vector field. It is different from physical energy. The

concept "work" is used to measure the energy differences

between two vector fields or the amount of energy used to
transform one vector field into the other. For a 3-D vector

field, work will be defined at two levels. At the higher level,

the work required to convert one set of a, 8 values represent-
ing a critical point into another is needed. This is denoted as

the Set Work. At the lower level, the work required to con-
vert one a, L7value in the set into another is needed. This will

be defined as the Elemental Work. The Set Work is therefore

the minimum amount of Elemental Work required to convert
one set into another. Therefore, EMD can be used on the Set
Work where the distance function is the Elemental Work.

Definition 3 (Set Work) For two vector fields with feature
distributions

6 Feature Comparison via EMD

A flow field can now be described by a set of a,/3 val-

ues. To compare two flows, one approach is to find the clos-
est match between the two sets of a, 8 values. The EMD

algorithm provides this functionality. EMD is emphasized,

since other techniques exist such as graph matching which

takes into account connections between critical points. In
the original description of EMD, terminology such as feature

distribution, energy and work are used. The terminology is
maintained for consistency and further information can be
found in [14].

Earth Mover's Distance computes the minimal amount of

work required to transform one dis_bution to another. In

the case of vector fields, the distribution can be represented
as the set of a, _ values.

Definition 1 (Feature Distribution) A feature distribution

for a 3-D vector fieM is the set of sets of a and/3 values

{{(ot_l),8_l)),(o_l) 8_1)),(_(1) N(')/l

, t 2 ,_'2 )'_OZ3 ,/33 Jr,

Ha(n) o(n), , (n) ,_(n)x

and

, (1), , ^(1){{(aP) ,A('))},

{(al 2), _1 (2)), (a_2), A(2)), (a_2), A(2))} '

, j,(")),• " ' k 2 _ _'2 J_

The amount of work necessary for transforming one vec-
tot field into the other is defined as:

7l

Workset = _,"EMD (It_ (i) o(i),, (i) _(i)_ (,._(i) a(i)._/

i=,

(A(i) a(i) I (._(i) j(i)_ [d(i) a(i)x_x
_,_i _L_I J_kt'_'2 _ 2 ],t 3 _J3 11)
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Figure 3: EMD capturing topological changes to Lorenz
Model

where EM De is the Earth Mover's Distance whose dis-
tance function is the Elemental Work.

Definition 4 (Elemental Work) For two vector fields with
feature distributions

{(al,

and

f t ' ' ,

The amount of work necessary for transforming one
vector field into the other is defined as: Worke =

Notice that the definition for elemental work is identical

to the work defined for a 2-D critical point defined in [1].
Since we decompose a 3-D critical point into a set of 2-D

critical points, EMD at this lower level is the same as the

2-D case. To summarize, we can find the distance between

two 3-D vector fields by extracting all 3-D critical points
in the fields and representing them by a set of a, fl values.

Earth Mover's Distance is used to find the minimum energy

between the critical points just as in the 2-D case. However,
the distance metric is defined as the EMD over the set of
a, _ values whose distance metric is further defined as the

elemental work. The elemental work is merely the Euclidean
distance in a,/3 space and therefore is a metric. It can be

shown that the Set Work is also a metric since EMD is a
metric [14].

7 Example: Lorenz Model

One application for field comparisons is in the area of me-

teorology. Weather patterns can be searched for in a database

to understand the development of a flow. E.N. Lorenz at-

tempted to model thermally induced fluid conveclion in the

almosphere using the Navier-Stokes equations [15]. Us-
ing two-dimensional motion, fluid heated from below and

cooled from above under the effects of gravity produce cir-
culation or convection rolls. This phenomenon is summa-
rized in Equation 8.

z' = a(y - z) (8)
y_ = rx -- y-- xz

z' = -bz + xy

x(t) represents a measure of the fluid velocity (amplitude of
the convection motion), and y(t), z(t) represent measures of

the spatial temperature dislribution. The equations are in

non-dimensional form where a is the Prandtl number (ratio

of kinematic viscosity to thermal conductivity), b is a geo-
metric factor and r is the Rayleigh number and is propor-

tional to the temperature difference between the upper and
lower regions of the system. These equations were one of

the first to demonstrate chaotic behavior, and have resulted

in over a hundred papers [16]. The resulting phase portrait of

the system is in three-dimensions and is composed of simple
critical points.

In the original study by Lorenz a and b were fixed, and
the Rayleigh number (i.e. the temperature difference be-

tween the plates) was varied. When r is below 1 only one

critical point exists. As the temperature difference increases,

three critical points form and eventually for large enough r

the entire system becomes unstable. Using a,/_ space, the
behavior of the system can clearly be seen and in fact the

transformation from a stable system to an unstable system is
continuous in this space.

Beginning with r = 0, Equation 8 has one critical point

at the origin. As seen in Figure 4a, the critical point is type

Class I whose phase portraits are three attracting (stable)
nodes. As r is increased to 1, the angle measured from the

positive a axis reduces and therefore the nodes become less

stable as it nears the saddle point. The arrow in Figure 4a

represents the critical point's progression with increasing r.
At r = 1, the angle is 135 ° and a degenerate node forms

(Figure 4b). Increasing r further, the origin's phase por-
trait becomes a set of two saddles, and an attracting node

(Figure 4c). As r increases, the saddle points approach the
repelling node.

In addition, for r > 1, two other critical points come

into existence at (=i=_ 1), =t=bx/_- 1), r - 1). For

r near 1, another set of stable attracting nodes form (Fig-
ure 4d). However as r approaches 1.346, the angle increases



approaching an attracting star. Since the system is non-

linear, the slightest perturbation causes the attracting star to
become an attracting focus. Hence for 1.346 < r < 24.74

(Figure 4e) an attracting focus forms. As r is increased

to 24.76, the phase portrait changes gradually to a center.

Hence, the observation of the unstable limit cycles forming
around r = 13.926. Once r increases past 24.74, the an-

gle increases to over 270 ° and a repelling focus comes into
existence and the system is unstable.

The change with temperature can also be understood by
observing how the phase portrait for a particular r compares

with the remaining phase portraits. Figure 3 plots the EMD
values required to change the critical points for r = 0 into

other critical points at other r values. As can been seen,
for r < 1, a gradual increase in EMD occurs as the at-

tracting node at the origin becomes a saddle. As soon as

r > 1, two new critical points form causing a large jump in

EMD. The jump is drastic since six additional (2-D) critical

points (attracting nodes) must form. Once r > 1.346, the

phase portrait changes from three attracting nodes, to one
attracting focus. Hence, less energy is required to create two

additional focii than six critical points. From r > 1.346,

the EMD value slowly increases as the system continuously
moves further from a stable system to an unstable one. Not

only is the attracting focii becoming a repelling focii, but the

saddles at the origin are approaching degenerate repelling
nodes (Figure 4c).

8 Conclusion and Future Work

We have extended the feature based comparison method
to three-dimensional vector fields. We have shown that the

extension can be straight-forward if we use the property that
a 3-D critical point can be decomposed into a set of 2-D

critical points with planar phase portraits. In addition, the
redefined distance function for EMD remains a metric.

As with the 2-D case, connections between the critical
points are not considered. Our experience has shown that for

many cases this is sufficient, however, to reduce the num-
ber of false positives and to provide a better distance be-

tween two fields the connections should be taken into ac-

count We are investigating this aspect along with generaliz-
ing this method to tensor fields.

This method has also demonstrated its usefulness in un-
derstanding complicated phenomenon such as the Lorenz

model. The evolution of the thermal convection can be cap-
tured with F_aMD.Since the system is represented by quanti-

ties, fast searches can be easily constructed to locate partic-
ular patterns.
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Class CanonicalForm Notes Phase Portraits II ll 'tl ll

_5 o o 1
,12 o
o As

Eigenvalues are real and

distinct. Eigenvectors

are linearly independent.

A-Node, A-Node, A-NOde

R-NOde, R-Node, R-NOde

A-Node, Saddle, Saddle

R-NOde, Saddle, Saddle

__ A A __ A --)_

-- A2+Aa

lA2
0

2-D case

A -Node

R-NOde

Saddle

C2(;q+,x_) x/:_(,x_+,x_)
a2=0 /_=0
as =0 #3 =0

2 oA1

0 _] Eigenvectors
A2 pendent.

are inde-

A-Star, A-Node, A-Node Ol = +1 _/1 = 0

R-Star, R-NOde, R-NOde o_2 = ,xl+x_ _ = xl-x_
R-Star, Saddle, Saddle x/a(x_+x_) V/2(A_+A_)

= A_+A2 _ A I -A_
A-Star, Saddle, Saddle as X/2(,X_+X_ ) /J3 -- _/2(X_+,X_)

Az
0

2-D case A-Star
R-Star

al = +1 _l = 0

a2=0 _=0

a3=0 _=0

0 A2
1-D case ignore

1°1A1 0

0 A_

A-Log Star, A-Node

Eigenvalues are real. R-Log Star, R-Node

1 linearly dependent R-Log Star, Saddle

eigenveetor. A-Log Star, Saddle

al =±1 /31 =0

02 =0 _ =0
AI+A2 2 AI--A2

as = x/2(,x_+_,,_)_ x/2(x,_+;q)

AI
0

2-D case A-Log Star

R-Log Star

al = ± 1 _31= 0
a2 =0 _2 =0
as = 0 _ = 0

0 A2
I-D case ignore

Table 2: Phase Portraits for Classes 1,2,3. Legend: A- : Attracting R- : Repelling A1 # A2 # As # 0, A1 > A2 > As



Class CanonicalForm Notes PhasePo_alm I1_I1 If#11

[A_ 0 O] oq =+1 #I =0)_1 0 J Eigenvalues are real. A-Star, A-Star, A-Star0 A1 Eigenvectors are linearly R-Star R-Star, R-Star _2 = +1 #2 = 0
a3 = +1 #3 =0

independent.

A1 1 0 al = +1 #1 = 0

)il 0 Eigenvalues are real. A-Log Star, A-Star

0 A1 One linearly dependent R-Log Star, R-Star c_9 = 0 #2 = 0cz3 = +1 83 = 0

eigenvector.

A-Log Star

)_1 Eigenvalues are real. R-Log Star o_2 = 0 _2 = O
0 "_1 TWO linearly dependent ¢x3 = 0 #3 = 0

eigenvectors.

a 0 Two complex and one R-Focus or2 : 0 82 = 0

0 X3 real eigenvalues. Center o_3 = 0 #3 = 0

Table 3: Phase Portraits for Classes 4-7. Legend: A- : Attracting R- : Repelling )_1 # )_2 # A3 # 0, A1 > A2 > )_3
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1 Abstract

The previous work [1 ] introduced a quantitative method
for comparing 2-D vector fields based on the number and

type of critical points that comprised the field. However,

the arrangement of the critical points was ignored poten-

tially causing two very different fields with the same type of
critical points but different streamline connections to be de-

tected as similar fields. This paper improves the comparison
technique by considering the connections between critical

points, thereby improving the representation of the vector
field.

2 Introduction

Comparing vector fields is an important analysis tech-

nique used in the sciences. The comparison of fields aids
in understanding and can improve mathematical models of

phenomena. For example, a database containing historical

weather patterns can be matched with the present day's pat-
tern to better understand the evolution of the flow. In fluid

mechanics, simulated flow fields can be validated with ex-

perimentally acquired data sets or with other models. Unfor-

tunately, many of the techniques rely on rendering to a com-

puter image and visually comparing the fields. This does not

lend itself easily to automated comparison techniques, and

certain fields may deceive the human eye. Data comparison

techniques operate directly on the raw data but requires a

common domain, grid alignment, and interpolation [2]. Fea-

ture based comparisons are often problem specific, i.e. in
fluid mechanics features include shock surfaces and vortex

cores. These features are typically qualitatively compared.

Recently in [1], a method for quantitatively comparing
vector fields based on topological features was introduced.

A vector field was characterized by the number and type of

critical points. The pattern formed about the critical point

was uniquely represented by an (tx, 3) coordinate. One of

the properties of the (a,/_) space was that Euclidean dis-
tances were valid and could be used as a difference measure

between two critical points. Intuitively, the (a,/3) space

describes the change of 2-D flow patterns as a progression

around the unit circle. Traditionally, phase-portraits are clas-

sified on p - q charts [3]. Though other mappings are pos-

sible, the (a, 3) representation provides a logical grouping

and progression from one critical point to another thereby
being attractive for comparing critical points. For exam-

ple, vortical behavior is grouped together (3 < 0) in the
lower half of the unit circle. From dynamics it is known

that a center pattern (3 = -1) is structurally unstable (non-

hyperbolic) and therefore is represented as a single point

in this space. Any slight perturbation (typically introduced

from non-linearities in the system) can change the pattern to

an attracting or repelling focus (3 _ 1). Therefore the dis-

tance between these focii can be small as found for nearly

conservative systems. The Earth mover's distance (EMD)
was used as the matching algorithm to minimize the cost of

work between the fields. The work in this case was merely

the Euclidean distance between two (a, 3) points. However,
the connectivity between critical points was not used. This

could be problematic since two vector fields with similar

critical points but significantly different connections led to

similar EMD values and therefore were false positives. For

a topologically accurate representation, it is necessary to in-

clude not only the number and type of critical points but the
set of connecting streamlines.

Two methods are presented that define metrics for com-

paring the number, type, and connections between vector

fields. The first technique is based on graph theory where

the vector field is represented using an attributed, relational
graph (ARG) [4]. The second method is based on EMD with

a redefined feature distribution that captures the graphical
structure of the vector field. The trade-offbetween the meth-

ods is accuracy versus speed. The paper is concluded with

an application demonstrating the advantages over the origi-
nal method.



3 Representation of Vector Fields using

Attributed, Relational Graphs

An attributed relational graph is composed of a set of
property based nodes and the relations between the nodes

represented by edges or connections. In the case of vector

field topology, the nodes are the critical points with (a,/3)
as the characteristic property and the connecting streamlines

are the edges that relate the critical points. To compare
two attributed graphs, Gi and Gi, a similarity or distance

measure, D(Gi, Gi) is defined between them. The measure

which can be thought of as a cost to transform Gi to G i
involves both the cost of transforming the properties of the

nodes and the relations of the graph. A desirable property
for D(Gi, Gi) is that it be a metric [4].

The process of transforming the properties of the node

(node-matching) can be interpreted as the total cost, cn, re-

quired to transform a set of nodes {p} of Gi to the set

of nodes {q} of G i. Therefore, given a particular node-

pairing, x, where fn(Pi, qj) is the cost of transforming a
pair of nodes (Pi,qi), the total cost can be written as c_ =

Y_.fa(Pi,qi) where the summation is over all node pairs.

For vector fields, the cost of node matching is merely the
Euclidean distance between (a, 8) points [1]. If two vector

fields contain an unequal number of critical points, normal
points corresponding to (a, _) --- (0, 0) are added. Normal
points correspond to node insertion and deletion and have a

uniform cost of unity since the distance from a normal point
to any point on the unit circle is 1.

The relation between two graphs is equivalent to graph
isomorphism which quantifies how close one graph struc-

ture is to another. In order to equate two graphs, node inser-

tion and deletion as well as edge insertion or deletion are re-

quired. The edge relations between critical points for a vec-

tor field are obtained by numerically integrating the stream-
lines connecting the critical points [5]. The edges can then

be related by an adjacency matrix, Aii [4]. This nxn matrix
where n is the number of nodes (critical points) is assigned

a value of i if critical point i is connected to critical point j,

otherwise a 0 is assigned. Note that the adjacency matrix can
represent only one connection between two nodes and has

implications to be discussed. To compare graphs Gi and G i,
the corresponding adjacency matrix is compared component

wise. The node-matching procedure described above guar-
antees that the size of all adjacency matrices are the same

since normal points are added to the flow field. Since the

graph is undirected (i.e. node i is connected to node j, and

vice versa), the adjacency matrix is symmetric and only half
the matrix need be considered). The overall cost involved to

convert vector field Gi with a configuration x and adjacency

matrix A to another vector field, G i with matrix A' is the

sum of the relational-matching and node-matching compo-

nents:

Ds(x) = _ y_ IAu - A_jl
i=1 j=i

+ +
1,3

(l)

And the distance measure is defined as the minimum over all

possible node pairings and the corresponding permutation of
the adjacency matrix,

D(Gi, G3) =,_n Ds(x) (2)

3.1 Comments on the ARG Technique

Since all permutations of the adjacency matrix need to be

calculated, the overall complexity is O(n! n 2) [5] which is

unacceptable for large problems. However, significant re-

search in the area of graph matching exists and is currently

being investigated [6]. The adjacency matrix described is

binary and does not take into account graphs with parallel

edges. In the case of a saddle point, 2 streamlines may con-

nect to a single critical point. However, non-binary mawices
can be used and is being investigated as well [7].

4 Extending EMD to Graph Matching

As forementioned, an immediate disadvantage to the cur-

rent implementation of ARCs is the time required for com-

parison and therefore is an area of current investigation.

However, a readily extendible solution is to modify the sig-
nature defined in [1] to account for the connections between

critical points. The EMD method in the worst case requires
2 n iterations, but in practice has been shown to be solved in
polynomial time (cubic) [8].

In the previous work, a feature distribution for a vector

field is the set of (a, _) values associated with the critical
points [1]. A new feature distribution is defined to be a set

of (a, 8) values and the (a, _) values of the immediate set of

connections. This approximates a graph sm_cture with n tree

structures. The decomposition is not unique and therefore

cases can be contrived such that two different graphs can
be decomposed into the same tree structures [5]. However,

given the relative position and types of critical points, there

are a limited number of ways that streamlines can join the

points, and as will be shown in the application section, in

practice this method is comparable to ARG.

The work required to convert one vector field into another
is defined to be the Set Work.

Definition 1 (Set Work) For two vector fields with feature
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the amount of work necessary for transforming one vector
field into another is defined as:

n

=
i=l

+min(W°rkEs)({(a_ i) , _3}1)), -" • ,,_i( (̂"') ,_'ira(n'))},-.-,

{(&ll))_l)),...,(ai.,^(m),pi3(m)..)))]

where WorkEs is the Elemental Set Work.

The min(WorkEs ) is the minimum amount of elemental

work. This can be found using EMD. The Elemental Set

Work remains the same and is defined in [I]. Therefore,
the distance measure is defined as the minimum of the set

work and is computed using EMD. To summarize, EMD is

run at two levels. The first is at a global level where EMD
minimizes the set work required to convert one vector field

into another. The set work which converts one critical point
into another requires the use of EMD to minimize the work

required to convert one critical point's children into another

critical points's children.

4.1 Comments on Extending
EMD Method

Figure 1: Attributed, Relational Graph compared with Orig-
inal EMD method. Note differences in frames 3-7,13 and
41.

tt7

io
z 0.4
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Figure 2: Attributed, Relational Graph compared with Ex-

tended EMD method. Note that the trends agree.

As mentioned previously, the representation of a graph

through a tree smacture is not necessarily unique and there-

fore can expect false positives. However, it may be possi-

ble to determine up front whether a particular graph has a
unique tree structure representation. In this case, the method

works nearly as well as ARG. The results will not be the

same, since a tree structure does not distinguish clearly be-

tween the cost of node-matching and graph-matching as it

does with ARG. In the limiting case, when no connections

are present, the extended method produces the same results
as the original EMD algorithm. Therefore, a lower limit can
be established. The extended method is a metric since the

Set Work is a composition of two metrics. Rubner has proven

that EMD is a metric if the distance measure is a metric. [8].

®

q ® v

Frame 1 Frame 4

Figure 3: Graph comparison of two vector fields. Region 1
in Frame 4 extends to the upstream region of the airfoil.



5 Applications

To demonstrate the effectiveness of ARG and extended

EMD, a comparison is made to the original EMD algorithm

on the test case of a flow past a 2-D airfoil at -90 ° an-

gle of attack. Rogers and Kwak computed this flow us-
ing an incompressible, time accurate Navier-Stokes code at

R_200 [9]. Fifty time steps were computed capturing sev-
eral periodic vortex shedding cycles. Figure 1 plots the EMD

of frame 1 versus the remaining 49 frames. The plots have
been normalized by the largest EMD values so the tech-

niques may be compared. Intuitively, Figure 1 represents

how much vector field 1 differs from the remaining 49 fields.
Both methods capture the periodicity within the flow indi-

cated by the valleys-every 16 to 17 frames. However, the

ARG algorithm differs from the original EMD in frames

3-7. From the topological illustrations in Figure 3, we see
that contrary to EMD's computation frames 1 and 4 are not

equivalent. Region 1 in frame 4 extends to the upstream

region of the airfoil. Also a new region is present start-
ing in frame 13. Note that the original EMD method used

only simple critical points and did not include the wall at-

tachment/detachment points. In order to preserve the graph-

ical structure, the separation points have been represented

by normal points (c_,/_) --- (0, 0), but will be properly clas-
sified in future papers. The number and type of attach-

ment/detachment points do not change with time (always 2
attachment and 2 detachment points) and so the methods are

comparable. The cycle is consistently completed every 16 to
17 frames. However, one marked difference occurs in frame

41 which has an energy level lower than its counter parts in

frames 8 and 25. This is due to frame 41 missing a sad-

die/repelling focus pair, and therefore the graph slructure is

closer to frame 1. Hence the graph method has indicated a
possible problematic area in the solver.

Finally, Figure 2 compares the ARG method with the ex-

tended EMD method. Immediately, it can be seen that both

methods are in agreement with one another. The amplitudes

are not expected to agree since each algorithm weighs the

significance of the nodes differently.
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6 Conclusions

We have demonstrated the effectiveness of including con-
nectivity information in the representation of vector field

comparisons. By further considering the connecting lines
forming the separatrices of the vector field, we are able to

improve the quantitative measure between fields. For the

airfoil data, we have shown that both the attributed graph
method, and the extended EMD method can be used as an

effective investigative and diagnostic tool. The extended

EMD method is considerably faster than the brute force

ARG method and in practice should be considered as an ef-

fective first pass tool.
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1 Abstract

We study the topology of 3-D symmetric tensor fields.

The goal is to represent their complex structure by a simple

set of carefully chosen points and lines analogous to vector

field topology. The basic constituents of tensor topology

are the degenerate points, or points where eigenvalues axe
equal to each other. First, we introduce a new method for

locating 3-D degenerate points. We then extract the topo-
logical skeletons of the eigenvector fields and use them for a

compact, comprehensive description of the tensor field. Fi-

nally, we demonstrate the use of tensor field topology for
the interpretation of the two-force Boussinesq problem.

2 Introduction

Second-order tensor fields have applications in many
areas of physics, such as general relativity, fluid flows
and mechanical properties of solids. The wealth of mul-

tivariate information in tensor fields makes them more

complex and abstract than scalar and vector fields. Vi-

sualization provides a means to gain new insights from
these rich data sets.

The most natural way to visualize a symmetric 3-D

tensor field is through its eigensystem, i.e., eigenvalues

and eigenvectors. A continuous representation of the

tensor field is obtained by tracing the trajectories of its

eigenvectors. These trajectories are called hyperstream-
lines [1, 2]. The difficulty with such an approach is how
to capture the structure of the 3-D domain while lim-

iting the number of hyperstreamlines to a minimum in

order to avoid visual clutter. The problem can be sig-
nificantly simplified by taking a topological approach,

similar to the one used in visualizing vector fields [3].

Degenerate points, defined as points where eigenval-
ues are equal to each other, are the basic singularities

underlying the topology of tensor fields. Eigenvectors

never cross each other except at degenerate points. In

the past, research has been conducted in the area of

two-dimensional tensor fields [1, 2]. We live, however,

in a three-dimensional world, and therefore,it is impor-

tant for us to understand the underlying physics of this
world. In this paper, we describe a new method for lo-

cating degenerate points along with the conditions for

classifying them in three-dimensional space. We also
discuss some topological features of three-dimensional

tensor fields, and interpret topological patterns in terms
of physical properties.

3 Theoretical Background

3.1 Definitions

Definition 1 (Second-Order Tensor Field) Let

f..(X, Y) be the set of all the linear transformations of
the vector space X into the vector space Y, and let E be

an open subset ofR n. A second-order tensor field T(T-)

defined across E is a mapping T : E ---* £(R m, R m)
that associates to each vector i of E a linear trans-

formation of R m into itself. If R m is referenced by a

Cartesian coordinate system, T(_') can be represented

by m 2 Cartesian components Tij(T'), i,j = 1,...,m,
that transform according to

m

Ti'J = E flip_jqTpq (1)
p , q----1

under an orthonormal transformation 3 = { _ij } of the
coordinate axes. [2]

In a Cartesian coordinate system, a 3-D tensor field
takes the following form:

T(_) =
( Tll(Z,Y,Z) T12(x,y,z) T13(x,y,z) )

T21(x,y,z) T 2(z,y,z)
T31(x,y,z) Ta2(x,y,z) Ta3(x,y,z)

(2)



Definition 2 (Hyperstreamline) A geometric primitive

of finite size sweeps along the longitudinal eigenvector
-field, vt, while stretching in the transverse plane under

the combined action of the two transverse eigenvectors,

gtl and Yt2. Hyperstreamlines are surfaces that envelop

the stretched primitives along the trajectories. We refer
to hyperstreamlines as "major", "medium" or "minor"

depending on the corresponding longitudinal eigenvec-

for-field that defines their trajectories and color hyper-

streamlines by means of a user-defined function of the
three eigenvalues, usually the amplitude of the longitu-
dinal eigenvalue. [4]

Definition 3 A degenerate point of a tensor field T :

E ---* £ (R m, Rm), where E is an open subset ofR TM , is

a point xo E E where at least two of the m eigenvalues

ofT are equal to each other. [4]

3.2 Locating Degenerate Points

A three-dimensional symmetric tensor field (Equa-
tion (2)) has 6 independent variables, therefore various

types of degenerate points may exist. These types cor-
respond to the following conditions:

_1(_0) = _2(z0) > _3(10) (3)
A1 (Z0) > A2 (_0) = A3 (x0) (4)

.,xl(Zo)= ;_2(,Zo)= _3(Zo) (5)

The characteristic equation of a 3-D symmetric tensor

can be expressed in the following form

Tll - A T12 Tla
A (A) = T12 T_2- A T_3

Tla T23 Tss - A

= -A 3+aA 2+bA+c (6)

where a, b and c are composed of the 6 independent
tensor components. The condition for the existence of

a degenerate point is that both A (A (z_)) and its deriva-
tive aa_--a-(L(£_are zero.

dA

A(A(_))=-A 3+aA 2+bA+c=0
dX .... +2aA+b=0

(7)

As a result, we obtain the following conditions cor-

responding to Equations (3, 4, and 5) respectively:

2a 3 + 9ab + 2d 3/_
B_(_,u, z) = 27 + c = 0 (s)

2a 3 + 9ab - 2d3/_
B2(x,y,z) = +c= 0

27

B3 (x,y,z) = a2 + 3b = 0

From the expressions for B1, B2 and B3, we de-

termine that: B1 (x,y,z) = 0 is a maximum for Bx,

B2 (x, y, z) = 0 is a minimum for B2 and B3 (x, y, z) = 0
is a maximum for B3.

Now the problem is to find extrema in a 3D contin-

uous field from the discrete experimental data sets. On

a 3-D discrete mesh, the search for the various extrema

is conducted by processing one grid cell at a time for
each spatial function.

This method can successfully locate the points of

triple degeneracy. It is especially useful when extended
to locate points of double degeneracy where the local

tensor appears in the diagonal form only when trans-
formed into its eigenvector space.

3.3 Separating Surfaces

For second order tensor fields, in most cases, the

eigenvector fields in the vicinity of a degenerate point

can be described in terms of three types of angular sec-

tors: hyperbolic, parabolic and elliptic sectors. It can

be proved that in a 2-D tensor field, at a simple de-

generate point, there are only one or three hyperbolic

sectors, and no elliptic sectors [2]. Correspondingly, we

call the degenerate point a wedge point when it has only

one hyperbolic sector and possibly one parabolic sector
or a trisector point when it has three hyperbolic sectors
[2].

The classification of degenerate points in 2-D tensor
fields [2, 5] can then be extended to 3-D tensor fields.

The building blocks are the fundamental elements as

defined for 2-D [2]. However, the separating surfaces in

3-D tensor fields have a general structure as they could
appear at various angles. Each of the surfaces is char-

acterized by patterns similar to those of hyperbolic or
parabolic sectors and is bounded by hyperstreamlines

that are emanating from or terminated at the degener-
ate point. Consequently, a point of triple degeneracy

can be classified by the number and type of separating
surfaces surrounding it.

In Figure 1 we show the eigenvector patterns in the

vicinity of a point of triple degeneracy with 4 bound-

ing hyperstreamlines. These hyperstreamlines form 6

hyperbolic separating surfaces. Figure 2 shows a point

of triple degeneracy with only 3 bounding hyperstream-

lines which form 2 hyperbolic separating surfaces and
one parabolic surface.

The trajectories on the surfaces are locally 2-D, while
off the surfaces they are fully 3-D and are determined
by their closest surface.

(9) 4 Topology of 3-D Tensor Fields

We choose the elastic stress tensor induced by
(10) two compressive forces on the top of a semi-infinite



Figure1: A pointoftripledegeneracywith6hyperbolic
separatingsurfaces.

sI

s2

Figure 2: A point of triple degeneracy with 2 hyperbolic

separating surfaces and one parabolic surface.

Figure 3: Stress tensor induced by two compressive

forces; minor hyperstreamlines

plane [6] to illustrate the advantages of using topo-

logical skeletons in visualizing 3-D tensor fields. In

principle, hyperstreamline trajectories of the stress ten-
sot show the transmission of forces inside the mate-

rial. Figure 3 shows two hyperstreamlines correspond-
ing to the most compressive eigen-direction, the mi-

nor eigenvector _3. The two forces, indicated by the

arrows, act on the surface at P1 = (0.5,0.0,-1.05)

and P_ = (-0.5, 0.0, -1.05) in the +z direction (down-

ward). The domain of interest (described by the bound-

ing frame) extends between (-1.0,-1.0,-1.114367)

and (1.0, 1.0, 0.0) so it includes the key features of the

stress tensor field, i.e., the degenerate points. It is as-
sumed that the region where z < -1.05 is in tension

and that no stresses are transferred across the plane

z = -1.05. The color of the hyperstreamlines encodes

the magnitude of the most compressive eigenvalue, _3,

while their cross section encodes the magnitude and

direction of the transverse eigenvectors. The hyper-

streamlines converge toward regions of high stresses

where the forces are applied. Note the sharp change
in color and cross section size of the hyperstreamlines

as they approach the acting points of the forces.

Analysis reveals that the tensor field contains two

points of triple degeneracy and that these points re-

side on the surface of the semi-infinite plane. More-

over, the eigenvalues at these points ( the location
of which is given by: D1 = (0.0,0.5,-1.05), D2 =

(0.0,-0.5,-1.05)) are equal to zero. This means that

Figure 4: Stress tensor induced by two compressive

forces; major hyperstreamlines

these points are stress free, a fact that can be verified by

an examination of the stress equations. We have there-

fore acquired physical insight into the stress tensor field

just by examining a basic topological feature, a point

of triple degeneracy.

Figure 4 shows hyperstreamlines that are obtained

by tracing the major eigenvector field. The location
and direction of the forces are indicated by the arrows

and the location of the points of triple degeneracy are

marked by spheres. The hyperstreamlines are presented
with a constant cross section to avoid visual clutter

resulting from the high eigenvalues in the vicinity of
the points of the acting forces. They are, however,

still color encoded by the major eigenvalue. Each of

the 2 degenerate points has 4 bounding hyperstream-

lines(separatrices), three of which lie on the surface
z = -1.05 in a trisector pattern and the forth, which

is pointing in the +z direction, connects the points of

triple degeneracy, and delineates one of the two symme-



Figure 5: Stress tensor induced by two compressive

forces; minor hyperstreamlines

5 Conclusions

In this paper, we applied novel methods to determine

the topology of tensor data sets, and made use of ad-

vanced representations to determine the significance of

degenerate points and topological skeletons in terms of

physical features.

By extracting the geometric structure of tensor data,

we produce simple and austere depictions that allow

observers to infer the behavior of any hyperstreamlines

in the field. It enables important elements of 3-D stress

distribution to be envisaged without visual clutter.

Degenerate points represent the singularities of the

tensor field. In the 3-D elastic stress tensor case we were

able to identify points of zero stresses with triple de-

generate points and to illustrate transmission of forces

inside the material.
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Figure 6: Stress tensor induced by two compressive

forces; medium hyperstreamlines

try planes (the other goes through the points of action

of the forces).

To further clarify the tensor topology, the skeletons

of the minor and medium hyperstreamlines are pre-

sented in Figures 5 and 6 respectively. We can see

from Figure 5 that the minor hyperstreamlines form a

trisector-point like pattern in the vicinity of the points

of triple degeneracy. They also indicate that a locus

of points of double degeneracy (A2 = A3) connects the

points of triple degeneracy. This is evident from the two

trisector points that lie in the symmetry planes just be-

low the points of triple degeneracy. The existence of the

line of double degeneracy is further verified by noting

the two points of double degeneracy in the skeleton of

the medium hyperstreamlines (Figure 6).
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Abstract

Combinatorial topology, also known as "rubber

sheet geometry", has extensive applications in ge-

ometry and analysis, many of which result from con-

nections with the theory of differential equations. A

link between topology and differential equations is

vector fields. Recent developments in scientific visu-

alization have shown that vector fields also play an

important role in the analysis of second-order tensor

fields. A second-order tensor field can be transformed
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into its eigensystem, namely, eigenvalues and their

associated eigenvectors without loss of information

content. Eigenvectors behave in a similar fashion to

ordinary vectors with even simpler topological struc-

tures due to their sign indeterminacy. Incorporating

information about eigenvectors and eigenvalues in a

display technique known as hyperstreamlines I reveals

the structure of a tensor field. To simplify an often

complex tensor field and to capture its important fea-

tures, the tensor is decomposed into an isotropic tensor

and a deviator. A tensor field and its deviator share

the same set of eigenvectors, and therefore they have

a similar topological structure. A deviator determines

the properties of a tensor field, while the isotropic

part provides a uniform bias. Degenerate points are

basic constituents of tensor fields. In 2-D tensor fields,

there are only two types of degenerate points; while

in 3-D, the degenerate points can be characterized in



aQ'-R'plane.Compressibleandincompressibleflows

sharesimilartopologicalfeaturesdueto thesimilarity

of their deviators.In the caseof the deformation

tensor,the singularities of its deviator represent the

area of the vortex core in the field. In turbulent

flows, the similarities and differences of the topology

of the deformation and the Reynolds stress tensors

reveal that the basic eddie-viscosity assumptions have

their validity in turbulence modeling under certain

conditions.

Introduction

Combinatorial topology is a branch of geometry. It

studies the properties of figures that endure when the

figures are subjected to continuous transformations. A

topological property of a figure is a property possessed

alike by the figure and all its topological equivalents.

In combinatorial topology, complicated figures are

constructed from simple ones and their properties are

deduced from the simple figures. 2

Combinatorial topology has vast applications to

solving systems of differential equations. It may seem

surprising that such superficially different subjects as

topology and differential equations could be related,

but research has shown that a link between these

two subjects is the concept of a vector field. Vector

fields have many important applications. The force

fields arising from gravitation and electromagnetism;

the velocity vectors of a fluid motion, such as the

atmosphere; and gradients, such as the pressure gra-

dient on a weather map or the height gradient of a

relief chart are all elements of vector fields. Recent

developments in scientific visualization have shown

that vector fields and their topological structures also

play a very important role in analyzing second-order

tensor fields.

Second-order tensors are fully represented by their

eigenvectors and associated eigenvalues.

T_ = Aie_ (1)

Where Ai and e_ (i = 1,2, 3) are eigenvalues and

eigenvectors of the tensor T, respectively. The Ai's

represent all the amplitude information while the

_'s represent all the directional information of T.

Visualizing a tensor field is equivalent to visualiz-

ing its eigenvector fields. However, unlike a vector

field, Eigenvectors are vectors with sign indetermi-

nacy. This remarkable feature distinguishes eigen-

vector fields from ordinary vector fields and makes

their topological features even simpler. The basic

constituents of tensor topology are degenerate points

where at least two of the eigenvalues are equal to each

other. They play a role similar to critical points in

vector fields. As with vector fields there are numerous

tensor quantities that are of interest to analyze and



visualize.In fluidmechanics,theReynoldsstressand

thestrain-rate(deformation)tensorsareexamplesof

tensorsof highinterest.Thisis inpartduetothefact

that eddieviscosityturbulencemodelsarebasedon

the assumptionthat the Reynoldsstresstensorcan

bemodeledasafunctionof thedeformationtensor.

A comparisonof the topologyof the two tensors

wouldprovidea meansfor validatingthe basicas-

sumptions.Anotheraspectofthedeformationtensor

is the alignmentof its mediumeigenvectorwith the

vorticityvectorandscalargradients.34 It isbelieved

that astationaryflownearthevortexcoreundergoes

rigid bodymotionimplyingthat the componentsof

the deformationtensorarezero. Computationand

visualizationof the phenomenais still an areaof

researchanddebate.Othertensorscommonlyusedin

theareaof fluid mechanicsarethevelocitygradient,

stresstensor,andthemomentum-flux-densitytensor.

Theoretical Background

Critical Points and Flow Field Topology

A critical point is a point in the flow field where all

three velocity components are zero and the streamline

slope is indeterminate. The number and nature of crit-

ical points in a vector field remain unchanged under

a continuous transformation. These are topological

properties of the system of differential equations.

Historically, critical point theory has been used pri-

marily to examine the solution trajectories of ordinary

differential equations.(see Kaplan ,s Pontryagin,6 An-

dronov, 7 and Minorsky s) In a reference frame where

a critical point is located at the origin, the motion in

the flow is described by the leading terms of a Taylor

expansion for the velocity field. The streamlines

are, therefore, defined by the solution trajectories of

three linear, coupled, first-order ordinary differential

equations. The relationship between the properties of

this 3 × 3 Jacobian matrix and the geometry of the

solution trajectories is not trivial.

A critical point can be classified according to the

eigenvalues of its Jacobian matrix. 9,10 A positive or

negative real part of an eigenvalue indicates a repelling

or attracting nature, respectively. The imaginary part

denotes circulation about the point. Accordingly, a

critical point can be classified as an attracting node, a

repelling node, an attracting focus, a repelling focus, a

center or a saddle.

For a complex flow field, the eigenvector planes are

not always easily identified and located and it becomes

necessary to use an analysis based on three invariants

P,Q and R of a 3 × 3 Jacobian matrix. 11 All possible

linear local flow trajectories of a moving continuum

for both compressible and incompressible fluids can



becompletelycategorizedin thespaceof P,QandR.

A set of surfaces can be defined in this space which

defines boundaries between topologically distinct flow

patterns and serves as a guide for identifying critical

points.11

Tensor Field Analysis

A tensor field in the real world is often very com-

plex and difficult to analyze as a whole. Therefore,

reducing the field to a simpler form is desirable.

Decomposition of a Tensor Field

Any given tensor can be decomposed into a sum of

a deviator D and an isotropic tensor U:

T = D + U (2)

Definition 1 (Deviator) A tensor is a deviator D

iff it is trace free, i.e. Trace(D) = O,

Definition 2 (Isotropic Tensor)

A tensor is isotropic iff Uij = _'6i1, where v is a

stretch factor.

Definition 3 (Degenerate Point) A degenerate

point of a tensor field T : E ---* f_ (R m, Rm), where E

is an open subset of R m , is a point xo E E where at

least two of the m eigenvalues of T are equal to each

other.

Definition4 (Singular Point) A singular point in

a tensor field is a point where all eigenvalues of a

tensor vanish, in mathematical representation, it is a

zero matrix.

At any location in a tensor field, an isotropic

tensor behaves the same in every direction, in other

words, it is isotropic throughout the whole field. The

topology of such a tensor is fairly simple and easy to

deduce.

A deviator, in contrast to an isotropic tensor,

has a different behavior in all 3 principal directions

except at a singular point where all of its components

are zero. A general tensor and its deviator have

the same set of eigenvectors; and degenerate points of

a general tensor and singular points of its deviator

occur at the same locations. 12 This means that the

topology of a tensor field is identical to the topology

of its deviator. A real tensor field is a deviator super-

imposed onto an isotropic tensor. By subtracting

the contribution of the isotropic tensor from the

tensor field, the deviator becomes dominant. This

allows a clear depiction of the topology and the fluc-

tuations of the field without the disturbance of the

sometimes dominant isotropic contribution. In the

following classification of a 3-D tensor field topology,

analysis of the deviator also provides a mathematical

simplification that reduces the otherwise 3-D P-Q-R



spaceintoa 2-DQ-Rplane. 2-D Tensor Fields

Hyp erst ream lines

Similar to streamlines in a flow field, hyperstream-

lines are integral curves satisfying:

d_

= v(7) (3)

Where s is a parameter measuring distance along the

path. Unlike the velocity field, Y represents one of the

eigenvectors of a tensor field T (7) obtained from:

T (70) V (70) = A (70) V (T0) (4)

at each location 70.

A hyperstreamline in 3-D is a trajectory that traces

along the longitudinal eigenveetor field while stretch-

ing in the transverse plane under the combined action

of the two transverse eigenveetors. We refer to hy-

perstreamlines as "major", "medium" and "minor"

depending on the corresponding longitudinal eigen-

vector field that defines its trajectory.

Topology of Tensor Fields

In the case of two-dimensional tensor fields, there

are only two eigenvalues Aa and A2, and 70 is a

degenerate point iff A1 (T0) = A2 (T0).

Similar to critical points in vector fields, tensor

fields have different types of degenerate points that

correspond to different patterns in their neighbor-

hoods. These patterns are determined by the tensor

gradients at the degenerate points. 14-16

Consider the partial derivatives

a _- 10(Tlx-T22) b : 10(T_I-T_2)
2 O_ 2 Oy

e = OT_.T._ d = OT_T_
O_ Oy

(5)

evaluated at the degenerate point T0. In the vicinity

of 70, the expansion of the tensor components to

first-order is as follows:

(6)
I __aAx+bAy

2

T12 _, cAz + dAy

where (Ax, Ay) are small displacements from T0.

An important quantity for the characterization of

degenerate points is the quantity

The topology of a tensor field T(_) is the topology

of its eigenvector fields Vi(_).13 Similar to critical

points, degenerate points are the basic constituents

underlying the topology of tensor fields. Degeneracy

occurs at points where at least two eigenvalues are

equal to each other.

6:ad-bc (7)

The appeal of 6 arises from being invariant under

rotation. When 6 < 0, the degenerate point has

three hyperbolic sectors. The pattern of eigenvector

fields corresponding to the trisector point is shown in

Figure 1. When _ > 0,the degenerate point has one
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Figure 1: Trisector (6 < 0) and wedge (6 > 0) points.

hyperbolic sector. The local pattern corresponds to

the wedge point represented in Figure 1.

3-D Tensor Fields

The eigenvalues of a 3-D tensor T can be obtained

by investigating its characteristic equation.

-T12

-T13

where:

-T12 -T13

A - T22 -T23

-T23 A - %3

=A 3+PA 2+QA+R (8)

P = Tll -l- T22 -l.- T33 (9)

In P-Q-R space, it can be shown that the solution

trajectories only exist between surfaces 81 and $2,

which are, respectively, given by:

2P 3+ 9PQ+ 2 (p2 + 3Q)3/2
+ n = 0 (12127

and

2P 3 + 9PQ - 2 (p2 + 3Q13/2
+ R = 0 (13)27

On surface 5'1, A1 (To) = A2 (To); and on surface

$2, A2 (To) = A3 (To). Triple degeneracy A1 (To) =

A2 (To) = A3(_o) occurs at points where 5'1 and 5"2

p3 p2

meet, i.e. R -- _, Q -- --5-.

Since the tensor and its deviator have the same

topology, it is sufficient to examine only the deviator

D. By definition, Dll + D22 + D33 -- 0, and therefore,

P -- 0. The coefficient Q can also be presented as:

Q,= 1-5 (Dh + D_2+ Di3 + 2D_: + 2Dh + 2Dh)

(:4)

The characteristic equation now becomes:

_3 + Q,_ + R' = 0 (:5)

Q _____

I T.
+

T_3

7"13

T33

T22

+

T23

T23

%3
(! 0 )

T. T12 T13

R= T_2 T22 T23 (]a)

T13 T23 %3

Similar to critical >oint analysis, one can see that

the coefficients P, Q and R are all tensor invariants.

The P-Q-R space now reduces to the Q'-R' plane.

On this plane, the solution trajectories exist between

curves L1 and L2 (shaded area). L1 and L2 are given

respectively by

and

3

-- = (1612

3

--= - (:7)
2
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Figure 2: Q'-R' plane

Double degeneracy occur on the curves L: and L2

and triple degeneracy occurs where L: and L2 meet.

i.e. Q'= R' = O.

For double degeneracy cases, the pattern of the

hyperstreamlines resembies that of a 2-D tensor

field. For exampIe, consider a degenerate point

where A!(_0) = A2(_0) > Aa(_e). The tensor field

is degenerate in the plane orthogonal to _3(_0) within

which locally two-dimensional patterns such as wedge

points and trisectors can occur.

However. the case of triple degeneracy is global

and the structure of the eigenvector trajectories in

the vicinity of the degenerate point is fully three

dimensional. The general structure of the eigenvectors

in the vicinity of a point of triple degeneracy is based

upon the fundamental 2-D degeneracies in planes

defined by the 3-D tensor and its expansion in the

neighborhood of (z0).I'

Case Studies

2-D flow past a hemisphere cylinder

The concepts discussed above are illustrated by first

visualizing the topology of the stress tensor of a 2-D

flow past a cylinder. Fluid elemems undergo compres-

sive stresses while moving with the flow. Stresses are

described mathematically by the stress tensor, which

combine isotropic pressure and anisotropic viscous

stresses (deviator). Both eigenvalues of the stress

tensor are negative and the two orthogonal eigenvec-

tors. t:"]-_and t-_, are along the least and the most

compressive directions, respectiveIy. At a degenerate

point, the viscous stresses vanish and both eigenvalues

axe equal to the pressure; degenerate points are points

of pure pressure. In Figure 3. the texturell represents

the most compressive eigenvector of the stress tensor

(_-_2). Color encodes the magnitude of the compressive

force (k), from most compressive(red) to least com-

pressive(blue). Red dots marked with xW are wedge

points; white dots marked with T are trisectors. ""

:! The texture is created by a technique dSscussed in Refer-

_ct_s. 16

"'This part of the work ha._ been done by Thierry Delmax-

celle, for details refer to :6



Figure 3: Stress in a flow past a cylinder; most

compressive field.

Figure 4: Reversible momentum flux density tensor in

the flow past a hemisphere cylinder

Vortical Flow about a Slender body of

Revolution

In the next example, hyperstreamlines are used

to correlate several different physical quantities in

fluid flow visualization. For the reversible part of

the momentum-flux-density tensor IIirj -- p60 + pviv.i

(p is the mass density and vi and vj are the velocity

components in the i, j direction, respectively), one may

correlate pressure p, velocity direction, and kinetic

energy density 1 27pv (p is the velocity magnitude).

Indeed, the tensor field IIr can be diagonalized as

p + pv 2 0 0 I

JII" = 0 p 0

0 0 p

The major eigenvalue of II r is /_1 = P 3_- /0/32 and

the associated unit eigenvector is aligned with the

velocity vector. The other eigenvalues are degenerate

and equal to the pressure (A2 = A3 = p) in the

whole space. It follows that only major eigenvectors

can be traced. Their trajectories are tangent to the

velocity field and correspond to streamlines of the

velocity field. The tubes' cross-sections are circular

with a diameter proportional to the pressure p.16 In

Figure 4, color encodes the kinetic energy density.

The direction of the incoming flow is 5° with respect

to hemisphere axis, the Reynolds number is 14,000

and the flow is incompressible. The detachment

at the end of the cylinder is clearly visible. The

pattern of hyperstreamlines indicates that momentum

is transferred from the nose of the body to the end

fairly uniformly with a globally decreasing kinetic

energy, as shown by color variations. However, there is

a sudden change of kinetic energy (color) and pressure

(diameter) associated with a significant variation of



thedirection of the first five tubes.

As noted before, a tensor field and its deviator

share the same topological structure. The importance

of a deviator in tensor analysis can be demonstrated

by the following discussion and illustration of the

deformation tensor in a stationary flow field.

For an incompressible stationary flow the deforma-

tion tensor, defined as Def = 0_, + 0__ has a zero
Ox.i Oxj

isotropic part and therefore is equal to its deviator.

For a compressible flow, the deformation tensor is

composed of a deviator superimposed on a non-zero

isotropic tensor which represents the rate of expan-

sion. Therefore, a deviator describes the topological

structure for both incompressible and compressible

stationary flows.

Following the assumption that for a rotational flow,

inside the vortex core, the flow is purely rotational.

Assume that the flow advances in the z-direction and

rotates about the z-axis while the velocity within

the vortex core area is (-wy, wx, vz) (where w is the

angular velocity and v¢ is the axial velocity and is

a constant for a stationary flow) and its deforma-

tion tensor Def(r < R) becomes singular; outside

the vortex core, the velocity is _ (-y, x, 0) and its

deformation tensor Def(r > R) is:

2F/y 0)_-_ _x2 + y2 -xy 0 (18)

0 0 0

Here r is the distance from a point to the center of

the vortex core and R is the radius of the vortex core.

It is virtually a 2-D tensor with major and minor

eigenvalues having equal magnitude but opposite sign

and the medium eigenvalue remains zero. The defor-

mation tensor is discontinuous at r = R. The angles

of separatrices can be calculated by using the tensor

in the neighborhood of the vortex core Def (r > R). is

However, there is no real solution for the angles. This

indicates that the major and minor eigenvector fields

are a pair of loci in the transverse plane while the

medium eigenvector follows the direction of the vortex

core.

Figure 5 shows hyperstreamlines of the deformation

tensor of flow past a hemisphere-cylinder. The angle of

attack is set at 19 ° with a Reynolds number of 445,000

and a freestream Mach number of 1.2. There is a pair

of primary vortices in this flow. The eigenvector field

around each core forms a focus swirling opposite to

each other. Both minor and mMor eigenvector fields

form a ring pattern. The upper ring in Figure 5 is a

minor hyperstreamline and the ring in the lower part

which encloses the body is the major hyperstreamline.

The two hyperstreamlines along the body are the



Figure5: Deformationtensorin a flowpasta hemi-

spherecylinderat incidence

mediumeigenvectorsandalsodefinethedirectionof

thevortexcore.

Near Field of a Wing-Tip Vortex

Figure6: Deformationtensorin the nearfieldof a

flowpastawingtip;majoreigenvectorfield

Eddieviscosityturbulencemodelshavebeenwidely

usedin thesimulationof turbulentflow,mainlyfor

modelingattachedflows. Undercertainconditions,

someof the modelscanbe modifiedandextended

to modelseparatedflowsaroundslenderbodiesof

revolutionat highangleofincidence.

In thefollowingexample,thenearfieldof a wing-

tip vortexisexaminedto determinewhetherthebasic

assumptionsbehindthe eddieviscosityturbulence

modelsarevalid. If not, thequestionasto whydo

theystill assistin simulatingtheflowwith relatively

reasonableresultsneedsto be answered.In anex-

perimentthat wasconductedbyChowandZilliac,a

Figure7: Deformation tensor in the near field of a

flow past a wingtip; minor eigenvector field

10



Figure8: Reynoldsstresstensorin thenearfieldof a

flowpastawingtip;majoreigenvectorfield

Figure9: Reynoldsstresstensorin thenearfieldofa

flowpastawingtip;minoreigenvectorfield

widearrayofmeasurements,includingsurfaceoil-flow

visualization,laser-illuminatedsmokevisualization,

surfacepressureandvelocity-fieldmeasurementsby

useof a 7-holepressure-probeandtriple-wirehot-

wireanemometry,wascompletedfor theflowovera

rectangularwingwith roundedtip, upto 0.67chords

downstreamof thetrailingedge.Theangleof attack

of the wingwasset at 10° and a chordReynolds

numberwaschosenat 4.6millionbasedon thedesire

to studya fullyturbulentvortex,tt

Theprimaryobjectiveof postmeasurementanal-

ysisis to comparethe deformationtensorwith the

Reynoldsstresstensor. Topologicalmethodsare

ideallysuitedfor this purpose.Previously,methods

for visualizationof tensorfieldsrangedfrom com-

paringthe individualcomponentsof thetensorsto

comparingtheeigenvaluesandeigenvectors.However,

theseconventionalmethodshavefailedto determine

whetherthetensorsaresimilar. Herewedescribea

newapproach.

Theeigensystemsarecomputedfor bothReynolds

stressanddeformationtensorsobtainedfromexper-

imentaldata. Texturemapsareusedto displaythe

fieldsin thetransverseplaneacrossthevortexcore.

ttfor detailed information about this experiment, please

see 18

II



Fromtheeddy-viscosityhypothesis,

dUi

-pRij = puv _xj (19)

Where P_j is the Reynolds stress, _ is the mean
dx 3

deformation tensor and _'T is the kinematic eddy

viscosity. The eigenvalues of the Reynolds stress

tensor are equal to the negatively scaled eigenvalues of

the mean deformation tensor. Therefore, the order of

eigenvalues of two tensors are ()pposite to each other,

i.e. _R1 > AR2 > _R_ while Au1 < Au2 < _ra. This

leads to the fact that the major eigenvector field of the

mean deformation tensor swirls in the same direction

as the minor eigenvector field of the Reynolds stress

tensor. Figure 6 and Figure 7 display major and

minor eigenvector fields for the deformation tensor,

respectively. Their patterns show a pair of loci which

confirms the discussion above regarding the behavior

of eigenvector fields of a deformation tensor in a

vortex core area. Figure 8 and Figure 9 are major and

minor eigenvector fields for the Reynolds stress tensor,

respectively. Their patterns also show a pair of loci.

However, the minor eigenvector swirls faster than that

of the deformation tensor, and therefore has a tighter

focus. Similarly, the major eigenvector swirls slower

and has a looser focus than the minor eigenvector

fields of the deformation tensor. The similarity of the

eigenvector fields between the deformation tensor and

the Reynolds stress shows that the basic assumption

behind the eddie-viscosity turbulence model are valid

to a limited extent because the fields of these two

tensors have different swirling speeds. This indicates

that the tensors are not aligned and therefore the

model is too simple for capturing the complicated

turbulent flow in the near field of the wingtip. It is

suggested that the model can be improved by taking

into account the variation in swirling speed.
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Abstract

This report discusses a method for extracting and visualizing shock waves from three dimen-

sional computational data-sets. Issues concerning computation time, robustness to numerical

perturbations, and noise introduction are considered and compared with other methods. Fi-
nally, results using this method are discussed.

Introduction

The visualization of shock waves within transonic, supersonic, and hypersonic flows has been

a persistent problem. The difficulty lies in accurately extracting the shock from a computed

data-set and presenting a meaningful representation of the results. Accurately extracting and

depicting these shocks can lead to improvements in aerodynamic design and an insight into

the physics of the flow. Much work has been done on the extraction of features within large

data-sets using various data visualization techniques such as isosurfaces, stream ribbons,

and contour maps. Recently, work done by Pagendarm and Seitz [1] has been successfully

applied towards the extraction of shock waves. Their technique relied on the fact that the

density jump across a shock numerically smears across a narrow band. This can be seen in

Figure la, which represents a 1-D example, where the ( axis is a location along the shock

and p is the density. Since A( is a rather small distance, the shock can be assumed to be

located at the inflection point. This point can be located via the second derivative, _ - 0.
5_2 --

Figure lc depicts this derivative. Many numerical algorithms can be applied to extract this

zero value. Pagendarm, and Seitz did not use the second derivative directly, since they were

dealing with 3-D datasets; instead, they used ft. _7(ff. Vp). There are a few difficulties

with this method. From a numerical method standpoint, the noise is amplified for each

derivative taken. Furthermore, this method requires the gradient to be taken twice, thereby

producing many local minima and maxima which are detected by zero-search algorithms.

These artifacts can be filtered with some computational effort. Another problem is that

this method may cause false detection in free stream regions. The minute perturbations in

numerical data in the free stream produce regions where the first and second derivatives

*Professor, Electrical Engineering and Aeronautics and Astronautics Departments.



oe_e_y T_mugh _ Sho_ (_)

m ow_mve d Den_y l_,r_p a Shock .r,,_

Figure 1: Density variation and its derivatives across a shock wave

appear to cross zero, rather than remaining fixed at zero. This causes zero-search algorithms

to tag these points. Pagendarm's and Seitz's algorithm, however, is general enough to be

applied to a variety of problems concerning discontinuities. What we propose is a technique

that takes advantage of shock attributes for a faster and cleaner extraction. Faster in that
we minimize the operation count, and cleaner in that we reduce noise.

Theoretical Background

A shock represents a sudden change of fluid properties. Typically, a shock is witnessed when

a body travels at supersonic speeds. The flow adjusts to a body by abruptly changing its

pressure, density, and temperature. This abruptness is caused by the flow's inability to

sense the body. The Mach number M which is defined as the ratio of stream velocity to

sonic velocity can be composed of two components namely one that is parallel MII , and the

other that is perpendicular M.L to a shock wave. The fluid properties such as density, static

pressure, and total temperature are distinct on either side of the shock and appear as a jumpacross the shock. We define M± as follows:

M± - V j_ • V__
as (1)

where a is the speed of sound and V j_ is the velocity in the direction of the pressure gradient,
VP

Vj. = V.
]VP[ (2)



The transition of M± across a shock progresses from supersonic, M± > 1 to subsonic, M± <

1. Equation (1) assumes that the pressure gradient is normal to the shock. We use this
assumption in our method for shock extraction.

Several steps are required for the extraction of the shock. We first begin by computing

M± for the entire computational space using Equation (1). Mx is used, rather than Mach

number, to ensure the capture of oblique shock waves. The computational space is composed

of grid cells. Each cell, composed of eight neighboring grid points, is checked to ensure the

region is in compression VP • V > 0. Shocks exists only in regions of compression; by

removing expansion waves, further computation is not required. A further check to validate

the existence of a shock within a cell, is to validate that the change in pressure (_P) is within

a safety factor of the Rankine-Hugoniot range. Regions where the pressure gradient changes

direction abruptly, thereby producing a large angle between the velocity vectors, can cause

Mx to drop below 1.0, and appear as a shock. Therefore, using the isentropic relation,

2,'_ 1
_p = p, __, M 2 "7 -

"y+ 1 "y+ 1 (3)

where M± is the largest in the computational set, we ensure that the pressure gradient is

large enough for a shock to exist. If a cell meets these criteria, it is then passed through the

marching cube algorithm [2]. Surfaces constructed from triangles of M± = 1.0 are created.

These triangles are further checked to ensure that the pressure gradient is in fact in the

direction of the surface normal. This filters out regions near the body (in the boundary

layer) that can be tagged as a shock since the velocity progresses from zero at the body

(no slip condition) to free stream velocity, hence passing through M± = 1.0. This method

of shock detection requires only the first derivative VP to be computed, which introduces

less noise and is computationally faster than other methods requiring a second derivative.

Computation time is further reduced by making simple checks to ensure a region's candidacy

for a shock prior to extensive processing. This method is also useful for finding shocks in

solutions that have not converged fully. Free stream perturbations will not be tagged since

characteristics that are indigenous to flow fields are used. Therefore, this method is not ideal

for general 3-D data-sets such as medical imaging data but works best for flow problems.

Results

Several test cases were run to ensure the validity of the method. Figure 2 depicts a lamda

shock extracted from a data-set of an ONERA M6 wing 1 with an incoming Mach number,

Moo = 0.84, angle of attack, a = 6 °, and Reynolds number, Re = 761,000. As can be seen

from the figure, we have a clean extraction of the shock with little to no artifacts. The

extraction also reveals a region where the lamda shock is separated. This space informs the

designer that the solution may not have converged fully, or a higher grid resolution is required

in the area. As another verification of the shock algorithm, we extract shock features from

a hemisphere cylinder at an angle of incidence of a = 19 °, Moo = 1.2, and Re = 445,000).
Figure 3 depicts the results. Two distinct shocks exist. The first is the bow shock which is

upstream of the nose. The coarseness of the grid yields "holes" in the shock surface. Further

IONERA (Office National D'etuedes Et De Recherches Aerospatiales) wing designed for studies of 3-D
flows of low to transonic speeds at high Reynolds numbers.



Figure 2: Lamda Shock extracted from ONERA wing.

downstream, along the top surface of the cylinder another shock forms due to the high angle

of attack which causes the flow to reach supersonic speed on the leeward side of the body.

Summary

We have devised a method for shock extraction that uses knowledge of the flow to reduce

computation time and noise. The basic steps of the method are as follows:

1. Calculate the Mach component in the direction of the pressure gradient (M±).

2. Verify that the region is undergoing compression.

3. Verify that the pressure gradient within a region is consistent with the existence of a
shock.

4. Use the marching cube algorithm to search for Mx = 1.0.

5. Disregard all surfaces whose normal is not in the same direction as the pressure gradi-
ent.

Future Work

We plan on extending this work to other significant flow features. The extraction of vortices

within a flow will be the first area of study followed by viewing skin friction along a body.

The skin friction will be depicted through a simulation oil flow combined with pressure
sensitive paint.



Figure 3: Bow shock with second shock on a hemi-spherical cylinder
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Abstract. The increasing usage of computers in experimental and theoretical re-

search has presented new challenges to the scientific visualization community. This
is especially valid for the case of multi-dimensional data.sets as vector fields which

are produced in the field of chemical engineering when flow and concentration fields
or heat transfer axe calculated or measured. Vector fields can be visualized in detail
using the "Line Integral Convolution" (LIC) Algorithm from Cabral and Leedom
[1]. The focus of this paper is a discusion of basic principles and features of LIC, its

usage on curvilinear grids and a comparison to traditional visualization techniques
as vector arrows and streamlines.

1 Introduction

Traditional approaches for flow visualization are symbolic representations

such as streamlines or vector arrows to visualize the direction of a flow field.
In recent years several new techniques for vector field visualization have been

introduced among the visualization with textures appears to be one of the

most promising. There are several definitions for textures in literature. Com-

monly Textures for flow visualization purposes are defined as surface struc-
tures containing directional information. An example of a texture is shown in

Fig. 1. For the first time van Wijk [2] used a texture to visualize the flow on a

ship hull. With the introduction of the "Line Integral Convolution" -algorithm
by Cabral and Leedom in 1993 [1] the generation of textures became much

easier. Since 1993 there are published a number of papers concerning the

application and extensions of the LIC-algorithrn. Forsseil and Cohen [3] ex-
tended the LIC-algorithm to its application on curvilinear grids in 3D. As

textures are by nature bidirectional, Delmarcelle and Hesselink [4,5] applied
textures for the visualization of eigenvector fields of tensor fields. In order to

visualize additionally the forward and backward direction and the velocity
of a flow animation of textures has been introduced by Cabral and Leedom

[1] and extended by several other research groups [3,6-9]. The generation of

textures requires an input noise (cf. section 2). With a local variation of the
frequency of the input noise Kiu and Banks [10] achieved special visual effects



Loser.Mewes.Levy, Hesselink

Fig. 1. Flow field past a zylinder _-isualized _'ith a tex-t_xe

using multi-frequent- noise. Battke, Stalling and Hege [11 i introduced an al-
gorithm to calculate textures on arbivrary surfaces in 3D. In order rx) reduce

the cost of computation for the calculation of textures, Stalhng and Hege [6!
introduced the algorithm "fastLIC', which allows a more efficient calculation

of textures. The visualization of unsteady flow fields _ith textures has been

investigated by Forssell and Cohen [3] and by Shen and Kao [12!.

2 Generation of Textures with Line Integral
Convolution

The basic principle of texture generation _dth the LIC-algorithm is to smear

an input noise along the integral lines of a vector field. The input noise con-
sists of random grey _alues for each pixel of the later generated texture. The

smearing of the grey _-alues can mathematically be expressed as a convolu-

tion of the grey values along the integral lines of the vector field. If Iin is the

intensity of the input noise (grey _-alues) and a(s) ist the path or integral
CtlTve

aG(s) V
- (])

as Ivl'

where the tangent of o"has the direction of the vector field, then the intensi_"
(_ey) values/o_,t of a rex-cure can be calculated with the equation

so--L

Io_t(x,y) = / Iin(cr(s))h(s - so)ds, _-ith (z,y) = or(So).
so--L

(2)
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In (2) h is the convolution filter function. This function has a strong influence
on zhe appearance of a texture. The simplest filter function is a box filter with

{_ if-L<s<Lh(s) = if-L > s or L < s', (3)

where L is the filter length in each direction from the output pixeI. Thus

t = 2 • L is the whole filter length. The longer the filter length, the longer
the black and white streaks will appear in the texture. If. a box filter is used
for the convolution (2) can be simplified to the summation

Io,,_(x;y) = Io_,_(i:j) = Z I_n(P)As, (4)

PC,-(c_)

where the intensits- _Jues Ii. of the pixels are only weighted by the path As
the streamline passes through this pixel. In (4) (i; j) are the pixel coordinates

at (x: y) and P is a pixel of the set r of all pixels which are intersecting with
the path cr of the local streamline.

ii ......... i'_

Fig. 2. Visualization of a boundary layer flow over a flat plate. (a) sho_-s the multi-
f_equeney input noise, (b) shows the generated texture

The whole procedure to generate textures can be subdi-_-ided into four
steps:

1. Calculation of the input noise, which consists of random intensi_- (grey)
levels in the area. where the texture has to be generated.

2. For each pixel a local streamline is calculated - starting at the center of
this pixet in both directions.

3. The intensity values of the input noise are integrated along the local

streamline within the distance I-L, +L_ and normalized by the integra-
tion length. The pixel values wilt be weighted by a con_,olution filter
function.



4 Loser,Mewes,Levy,Hesselink

4. Theintegrationof the pixel values leads almost to an equalization of the

intensity values. Therefore the contrast of the texture has to be increased.

The result of this procedure is a black and white texture as it is depicted in

Fig. 1. After that the texture can be colored in order to visualize an additional

dimension of information (cf. Sect. 3).

The type and frequeny of the input noise has a strong influence on the

appearance of a texture. There are several algorithms to calculate the input

noise [4,7]. The frequency of the noise can be locally varied in order to achieve

an additional visual effect. In Fig. 2 the boundary layer flow on a flat plate

is visualized using multi-frequency noise [10]. The velocity in the horizontal

direction vz is a function of the vertical distance y to the plate as vz _ vfy.
Besides the direction of the flow the texture in Fig. 2 gives an impression of

the magitute of the velocity.

pressure.
high

[OV/

Fig. 3. Visualization of the flow field of a viscoelatic fluid between two rotating
rolls. The color encodes the pressure. Image by courtesyof Karsten Riest [13]

3 Coloring Textures in Chemical Engineering

With colored textures it is possible to visualize one more dimension of in-

formation in the same image. The color can encode e.g. the magnitute of

the velocity, the pressure, the volume fractions of the phases etc. In order to

generate colored textures one first have to define a color map which gives for
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volumefradion

of the liquid:

o.oII

impeller

visualizedplane

liquid

Fig. 4. Flow field in a two-phase separator. The color encodes the volume fraction

of the liquid. Image by courtesy of Matthias Creutz [14]

each scalar value to be visualized a color, except black and white. Then the

color values will be multiplied with the intensity value of the precalculated

black and white texture [7]. In Fig. 3 the flow field between two rotating

rolls is visualized where the color encodes the pressure. In such images the

dependencies between pressure and flow topology can be studied easily.
In the example in Fig. 4 the flow field in a two-phase separator is depicted.

The flow is caculated with a commercial CFD programm. With the color

map the volume fraction of the liquid phase is encoded. The texture shows

the results on the plane in the middle of one section of the impeller.

4 Textures on Curvilinear Surfaces

Many grids for numerical calculations are curvilinear grids. It is possible to

generate LIC-textures on curvilinear surfaces of curvilinear grids [3,7]. In
order to generate a texture on a curvilinear surface, first the vector field on

this surface is mathematically transformed into a 2D surface. We denote this

surface the computational space. The transformation into the computational

space can be performed using the Jacobian matrix. In the computational

space the texture will be generated according to the algorithm described

above. The resulting 2D-texture in computational space will be mapped back

to the curvilinear surface in 3D. This procedure is illustrated on the left side

in Fig. 5. In order to generate a texture of the flow on the first slice of the
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curvilinearsurface multi-frequency noise

LICtexture in 2[3
computational space

optimized LIC texture in 2D
computational space

standard texture optimized textu re

mapped on surface mapped on surface

Fig. 5. LIC-textures on curvilinear grids. Left: Mapping a 2D texture on a curvi-

linear surface in 3D. Right: Optimize the streak size of the 3D-texture using multi-
frequency noise
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numerical grid of a hemishere cylinder (top), a LIC-texture in computational

space is calculated (middle) and then mapped back to the curvilinear surface

(bottom).

This procedure works well if the grid density is similar in all areas of

the curvilinear surface. But for the hemisphere cylinder the grid density is

much higher at the top of the hemishere than at the end of the zylinder.

Thus the streaks which are homogeneous in the computational space vary

significantly on the curvilinear surface in 3D (Fig. 5 bottom left). This can

be compensated by using multi-frequency noise. The frequency of the noise

is calculated high, where the grid density is low and vice versa (Fig. 5 top

right). Thus locally different streak widths are calculated for the texture in

computational space (Fig. 5 middle left). If this texture is mapped onto the

curvilinear surface it results in an almost uniform streak width in 3D (Fig. 5

bottom right).

Table 1. Advantages and disadvantages of flow visualization with textures com-

pared to traditional visualization techniques

visualization advantages disadvantages

technique

vector arrows simple depiction

direction clear

length of arrow shows mag-

nitude of velocity

details difficult to visualize

discretisation necessary

visual clutter for high den-

sity of arrows

streamlines visualization of flow path

quantitative comparisons of

different flow fields possible

details difficult to visualize

discretisation necessary,

problems for convergence /

divergence

bidirectional

textures visual appealing

highest possible resolution of
flow fields, details depicted

good representation of flow

topology

continuous representation

high computational cost

bidirectional

5 Textures versus Traditional Visualization Techniques

The advantages and disadvantages of textures compared to traditional flow

visualization techniques, among which vector arrows and streamlines are the
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most common, are shown in Table 4. One of the major strength of textures is

that with pixel-oriented textures the highest possible resolution of a flow field

can be achieved. Thus even details like secondary vortices can be resolved and

the flow topology is easy to extract graphically. The disadvantage of textures

for flow visualization is their high computational cost and the bidirectional

nature of textures. The later disadvantage can be overcome by animation

of textures [6,7]. The bidirectional nature of textures makes them ideal for

the visualization of bidirectional vector fields like eigenvector fields of tensor

fields [5].
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